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Abstract. All readability research is ultimately concerned with the re-
search question whether it is possible for a prediction system to automat-
ically determine the level of readability of an unseen text. A significant
problem for such a system is that readability might depend in part on
the reader. If different readers assess the readability of texts in funda-
mentally different ways, there is insufficient a priori agreement to justify
the correctness of a readability prediction system based on the texts as-
sessed by those readers. We built a data set of readability assessments
by expert readers. We clustered the experts into groups with greater a
priori agreement and then measured for each group whether classifiers
trained only on data from this group exhibited a classification bias. As
this was found to be the case, the classification mechanism cannot be
unproblematically generalized to a different user group.

1 Introduction

In the most general terms, the goal of authoring a text is to get a message across
to an intended audience. The readability of a text, then, can be defined as the
relative ease of that audience to understand the author’s message. It is intuitively
clear that, even when defined in such general terms, the inherent subjectivity
of the concept of readability cannot be ignored. The ease with which a given
reader can correctly identify the message conveyed in a text is, among other
things, inextricably related to the reader’s background knowledge of the subject
at hand [11].

The domain of readability research has at its primary research goal the design
of a method to automatically predict the readability of a text. In recent years,
a tendency seems to have arisen to explicitly address the subjective aspect of
readability. [14] ultimately base their readability prediction method exclusively
on the extent to which readers found a text to be “well-written”. [10] take the
assessments supplied by a number of experts as their gold standard, and test
their readability prediction method as well as assessments by novices against
these expert opinions. Similarly, [13] compile a gold standard for readability
prediction by collecting assessments by expert and naive readers.

Subjective assessment entails the problem of reliably aggregating data that
were obtained from various sources. This is a recurring issue in Natural Language
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Processing, and is routinely caused by several contributors making different de-
cisions regarding some manual annotation task. [2] give a good overview of the
standard practice that has arisen within the NLP domain, viz. to calculate some
measure of inter-annotator agreement. If this measure is high enough, the data
are deemed acceptable to serve as a gold standard.

In readability research, however, this practice does not seem to have gained
much ground. Given that many readability prediction methods (e.g. [6,5,17])
were developed before it became commonplace, it is not surprising that inter-
annotator agreement played no great part in the development of those readability
formulas. However, even recent publications such as [14] and [10] make no men-
tion of the issue, and uncritically average out results collected from different
readers. This should be done with great caution indeed: [1] claimed that if the
data on which readability formulas are based were not aggregated on the school
grade level but considered at the individual level, their predictive power would
drop from around 80% to an estimated 10%.

We aim to determine whether a readability prediction system can be general-
ized to a broader audience, even when lacking a priori agreement measures. This
is done by evaluating the accuracy of different readability systems on different
groups of experts with a large a priori agreement. Poor performance would then
imply that the annotation behaviour of the expert group deviates from the larger
group of annotators, which leads to the conclusion that the readability system
is not appropriate for the general public. To compose the groups of experts, we
used a simple clustering technique, combining experts with similar annotations
together. Classification accuracy is used to measure the deviations between an
expert group and the rest, i.e. the concatenation of the other expert groups.

Instead of calculating inter-annotator agreement prior to training a readabil-
ity prediction system, we verify whether the classification accuracies of systems
trained on a single cluster and the concatenation of the other clusters differ for
the same test set.

The remaining sections of this article contain details on how we composed
our data set (section 2), a discussion of the issue of determining inter-annotator
agreement in our data set and a proposed approach to locate generalization
problems (section 3), experimental results (section 4) and conclusions and further
work (section 5).

2 Annotation process and data set

2.1 Training corpus

Readability research is often concerned with the readability prediction of texts
for relatively unaccomplished readers. The goal, then, is to identify reading mate-
rial suited to the reading competence of a given individual [6, 17, 16, 18]. Training
data for the readability prediction system can then be drawn from textbooks in-
tended for different competence levels [16, 7]. However, since our system must be
applicable to generic Dutch text, such educational material is insufficient, and
we assembled a new training corpus.
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We selected 105 texts from the Lassy corpus [12], which is a corpus annotated
with lexical and syntactic features. From the selected texts, fragments of one or
more paragraphs were used for readability assessment. The length of the frag-
ments ranged from 81 to 306 tokens, resulting in a total amount of just under 17K
assessed tokens. In order to develop a generically applicable system that can pre-
dict readability across text domains, we attempted to construct a cross-domain
training corpus. Therefore, the texts in the corpus were selected manually from
several sources, such as children’s literature, Wikipedia, newspaper articles and
technical reports. Each of the text fragments received on average 22 individual
assessments, with a standard deviation of 9.12. As different annotators applied
different scoring strategies, it is impossible to give an overall description of the
way in which assessments were distributed in the range of possible values.

2.2 The Expert Readers annotation tool

The corpus was assessed for readability by a number of experts, who are pro-
fessionally involved with the Dutch language. The experts used a password pro-
tected web application to assess the texts.

In the application, multiple texts can be placed underneath each other in a
column, that visually represents an overview of the ratings an expert assigned
during the current session and helps the annotators to build up a frame of
reference against which to assess newly loaded texts.

An annotator can load texts and assign a score between 0 (easy) and 100
(difficult) to them. Previously assigned scores can be revised.

A batch of texts with accompanying scores can be sent to the database by
pressing a button. The texts are then removed, except if the annotators indicated
they wanted to keep them available, so as to maintain a frame of reference across
batches. When a user submits the current assessments, all scores in the batch
are logged.

Texts are provided to the annotators randomly, with equal probability of
providing a text from each text type, and independent from which texts were
previously provided. However, a text can never appear twice in the same batch.

Apart from the readability scores and the rankings in the batches, the experts
can also enter comments on what makes each text more or less readable. That
allows for qualitative analysis. We did not ask more detailed questions about
certain aspects of readability, because we wanted to avoid influencing the text
properties experts pay attention to. Neither did we inform the experts in any
way how they should judge readability. Any presumption about which features
are important readability indicators was thus avoided. We do not know which
experts based their assessments on which text properties, and which relative
weights they attributed to them. Yet our main interest is to design a system
that is robust enough to model readability as generally as possible.
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2.3 Data provided through the application

The assessments of the experts are stored in a database. For each expert, all the
batches, containing texts and corresponding scores are available. A qualitative
survey reveals that different experts sometimes employ a different scoring strat-
egy. For example, some people only use scores that are multiples of 10, while
others use the full range of possible scores. This is not a trivial observation: such
a difference in score assignment compromises the possibility to use the scores
directly for regression.

The batches can also be seen as rankings of texts. We further consider the
text pairs that can be extracted from the batches. From each batch, we extract
all pairs of texts that differ in score and for which at least two other texts are
ranked between the pair. In this way, we can reasonably assume that the expert
evaluated the lower-ranked text as more readable than the text with the higher
score.

3 Detecting disagreement between annotators

In this article, we use one particular type of readability prediction system as a
working example: a binary classifier which is able to predict which of two given
texts is the more readable one. To construct such a readability prediction system,
a possible approach would be to first determine inter-annotator agreement for
each text pair. The text pairs for which reasonable agreement [2] is found can
then serve as the basis for a gold standard, which can then be used to train a
binary classifier. More generally, composing a gold standard prior to performing
supervised learning experiments is the standard practice.

However, in the data set provided by our experts, not everyone has assessed
all of the same texts, let alone text pairs. It is therefore not possible to determine
the agreement for all text pairs with sufficient accuracy, prior to training a
binary classifier: there are too many missing values. Not all annotators spent
the same amount of time assessing texts and some assessed more texts per batch
than others. Therefore, not all annotators contribute the same amount of text
pairs and there is not always an overlap between the texts they have seen. We
also want to be able to maximally employ minor contributions. Furthermore, we
found disagreement concerning some text pairs, and we want to examine whether
those disagreements are incidental or whether they betray a more fundamental
controversy in readability assessment.

We can identify two possible causes for the disagreements: there is no clear
difference in readability between the two texts in the text pair; or different
experts have contrasting opinions on what factors constitute readability. Over-
coming both issues would require more experiments and a qualitative analysis.
Further in this article, we don’t attempt to distinguish between these issues, but
we perform a quantitative analysis to uncover their effects.

As explained above, a readability prediction system can be developed by
merging all the text pairs into a gold standard and training a classifier. In order
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to merge the training data with an acceptable degree of reliability, there should
be sufficient agreement between different experts’ assessments of the same text
pairs. An estimate of the classification accuracy, for example through cross-
validation, then indicates how well the trained system works. However, since
inter-annotator agreement could be too low to speak of a gold standard, we
also need to investigate in further detail to what extent the resulting system
can be generalized. That means that apart from achieving a high classification
accuracy, it is also important that the eventual system delivers results that are
acceptable for all experts. To facilitate a priori agreement and to be able to
check a posteriori whether no expert views were excluded, we created groups of
experts who provided the most similar annotations.

3.1 Preparation of the data sets

Extract text features

Expert Readers data H Create proximity matrix }—>| Cluster users Train and test
Text pairs per cluster

Fig. 1. Outline of how the data sets are composed from the expert assessments.

Figure 1 gives a schematic overview of how the data sets used for classifica-
tion are prepared. Each block in the figure represents the execution of a set of
commands. If an arrow points from one block to another, the former is executed
before the latter and output from the former is passed as input to the latter.

Expert Readers data In this node, data are extracted from the Expert Read-
ers Application database. Annotators who provided 25 text pairs or fewer are
excluded.

Create proximity matrix For our experiments, we need groups of experts
who have a shared view on readability. To divide the experts in those groups, we
need a proximity measure: a metric to indicate to what extent the judgements of
different experts are similar. The metric should allow us to distinguish experts
who agree on how to order texts from those who disagree. Precision of the text
pairs of one annotator with regard to the other meets this requirement.

In general, precision and recall are calculated by the following formulas: P =
and R = L5~ where TP is the number of true positives (i.e. text

TP
TP+FP ) TP+FN’ : M
pairs on which both annotators agree), and F'P is the number of false positives
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(i.e. text pairs on which the annotators disagree). Negatives with regard to a
particular pair of experts would be the text pairs that only one of the two experts
has reviewed. Since the annotation procedure does not require all annotators
to see the same text pairs, no sensible distinction can be made between true
negatives and false negatives. Therefore, the number of false negatives (FN)
cannot be determined in this context, and we cannot calculate meaningful recall
figures. The proximity between two experts is therefore the precision: the number
of ordered text pairs that both annotators agree on, divided by the total number
of text pairs that appear in the data sets of both annotators. The result of this
block is a square symmetric matrix with proximity measures.

Text pairs Text pairs
of expert A of expert B

Fig. 2. True and false positives for the text pairs of two experts. Since the experts have
not annotated all text pairs, there is no sensible notion of true and false negatives.

Cluster users Using the proximity degrees between all experts, it is possible
to divide them into groups, so that the assessments of each expert correspond
more to those of every other expert within the same group, than to those of
other experts. We thereby make groups of experts with high a priori agreement.
To create the groups, we use a simple agglomerative clustering algorithm [8].
Initially, a cluster is created for each individual expert. Subsequently, the two
clusters with the highest degree of proximity are merged into a single one, until
there is only one cluster left. The proximity between clusters is calculated as
the minimal proximity between any of the members of each of the clusters.
In this way, the agreement between all experts per cluster is maximized. The
dendrogram in figure 3 shows the result of the clustering algorithm. Finally,
in order to divide the experts into similar groups, we branch the dendrogram,
keeping only the greatest possible clusters of experts among which the precision is
higher than a given cut-off value. We experimented with different cut-off values,
ranging from 0.5 to 0.9. If, for example, the precision is more than 0.5, there are
at least as many text pairs about which each pair of annotators agree, as there
are pairs about which they disagree.

Text pairs per cluster Given the set of experts in each of the clusters, their
text pairs are merged into a single set. The set of text pairs for the cluster is
simply the union of the text pairs of the annotators in the cluster.
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Fig. 3. A dendrogram showing the result of clustering the annotators. The edge labels
show the precision between the child nodes. Each node represents a set of annotators.
The leaf nodes represent the individual annotators.

Extract text features. For all the texts in the corpus, a number of features
are extracted that can be used as training material for a classification algorithm.
These are primarily indicators for lexical complexity, such as mean word length
in number of characters [5, 17] and number of syllables [6], TF-IDF, log-likelihood
and mutual information [9] computed against a large reference corpus [15], as
well as character bigram and trigram frequencies. Additionally, some syntactic
information is encoded in the form of proportions of different part of speech
classes as tagged by the Tadpole parser [3].

3.2 Train and test

Class Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

1 0.46 0.01 2.92 -0.01 0.2 0.03
-1 -0.46 -0.01 -2.92 0.01 -0.2 -0.03

Table 1. An example of two feature vectors for a text pair. The vectors are truncated.

Given the feature vector V, for text T, and the vector V for text Tj, we
construct a single vector V;, for the text pair Ty, by calculating the difference in
feature values: the values from V}, are subtracted from the corresponding values
from V. The class label 1 is assigned to V; if T, is assessed as more readable than
Ty, and label -1 is assigned if the opposite is true. Additionally, the vector Vj,
is constructed with the reverse values and the reverse class label. Self-evidently,
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such corresponding vectors are never distributed over the training and test data,
as that would amount to contamination of the test data. A simplified example of
a feature vector is shown in table 1. These feature vectors can serve as training
data for a binary classifier, which can then be used to predict which of two texts
is more readable than the other (see [18] for a similar procedure).

For each cluster, two data sets are generated. One set contains the feature
vectors of the text pairs as assessed by the annotators in the cluster, and the other
set contains those of the concatenation of the other clusters (the complement).
The two data sets are then split up to perform 10-fold cross validation. An
outline of the experiments per fold is shown in figure 4. The folds are created by
splitting up the text sets (rather than the sets of text pairs) in 10 parts, since
splitting only the text pair sets could result in contamination of the test sets.
Text pairs of which at least one text is assigned to the test fold are added to the
test set. The rest of the text pairs are added to the training set. This division of
text pairs is done both for the cluster and for the complement.

Cluster Complement
text pairs text pairs

Division by texts that occur
in the test pairs

Fig. 4. Division in training data and test data per fold. A classifier is trained for
both training sets and both classifiers are then tested on both test sets, so that the
classification accuracy can be compared per test set.

To avoid that the amount of available data in either of the training sets
might skew the classification results, we downsample the greater training set by
randomly selecting an amount of text pairs that is equal to the amount of pairs
present in the smaller training set.>

For each fold in each cluster, this results in two data sets that serve as
training data for a binary classifier, and two test sets. We call the corresponding
data sets the cluster training set, cluster test set, complement training set and
complement test set. Both training sets are used to train a binary classifier [4].
We call a classifier trained on a cluster training set a cluster classifier and a

3 In order to prevent that a particular downsampling of the training data might yield
anomalous results, 10 random downsamplings have been performed and tested for
each of the 10 test folds. We consider the mean classification accuracy over these 10
downsamplings within a fold as the classification accuracy of the test fold.
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classifier trained on a complement training set a complement classifier. Both of
these resulting classifiers are tested on both test sets to obtain the classification
accuracy.

The goal of this experiment is to measure the influence of diverging annota-
tion strategies on classification accuracy. If different annotation strategies have
no influence on classification performance, both cluster and complement classi-
fiers should perform equally well on cluster and complement test sets, or one of
the classifiers should outperform the other for both test sets. If, however, each
classifier performs better on the test set corresponding with its training set, that
indicates a bias between training and test set, revealed by the combination of
the feature set and the learning method that is used. If such a bias is found,
the generalization ability of the learning method with the given feature set is
questionable.

4 Results

. . — _ TP+TN
Classification accuracy is given by the formula CA = 75737 Fpr7x, Where

TP, TN, FP and FN are the number of true positives, true negatives, false pos-
itives and false negatives, respectively. In our experiments, we always observed
TP =TN and FP = FN, which is the result of the symmetric construction of
the training and test data.

Table 2 gives an overview of our results.* The second to fourth column of the
subtables show the average over the folds and subsamplings of the classification
accuracies for training and testing on the data sets indicated in the header rows.
Accuracies are only comparable when the same test set is used, so the second
and third columns can be compared to each other and the two last columns are
comparable.

The results can be interpreted as follows. If a classifier is generalizable, that
implies that the test sets are not biased towards the classifier trained on the
corresponding training set. The upshot of this is that the classification accuracies
should indicate that either the cluster classifier or the complement classifier
performs better on both test sets.

To clarify, we consider cluster 5 at cut-off level 0.8. Here, we see that the com-
plement classifier performs better on both test sets than the classifier trained on
cluster 5 itself. When testing on the cluster test set, we observe a higher classi-
fication accuracy for the complement classifier: 0.72 versus 0.64 for the cluster
classifier. Similarly, when testing on the complement test set, the complement
classifier achieves higher accuracy than the cluster classifier: 0.64 versus 0.58.
When taking only the results for cluster 5 at cut-off level 0.8 into account, then,
it would be plausible that the classification results can be generalized.

4 We also computed results at cut-off level 0.9, but since too many individual annota-
tors appear as expert groups, the cluster test sets often became too small to calculate
meaningful results (cfr. figure 3). Therefore, only results at cut-off levels 0.5 to 0.8
are shown.



Train||Cluster| Compl. ||Compl.|Cluster
Train||Cluster|Compl.||Compl. |Cluster Test || Cluster|Cluster||Compl.|Compl.
Test||Cluster|Cluster||Compl.|Compl. 0.71 0.62 0.68 0.59

0.75 0.63|| 0.68] 0.52 0.60/ 0.70|f 0.64| 0.58
0.78 0.75| 0.67| 0.63 0.77{ 0.78|| 0.66| 0.62
0.68| 0.63|| 0.70f 0.62 0.68| 0.65|| 0.72 0.60
0.71 0.67]| 0.68| 0.61 0.77| 0.63| 0.68| 0.53
0.68| 0.65| 0.72 0.61 0.68| 0.63|| 0.70| 0.62
Mean|| 0.72 0.66|| 0.69] 0.60 0.74| 0.74|| 0.67| 0.61
Mean|| 0.71 0.68f] 0.68| 0.59

U W N~
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(a) Cut-off 0.5 (b) Cut-off 0.6
Train||Cluster| Compl.||Compl.|Cluster
Train||Cluster|Compl.||Compl. |Cluster Test]| Cluster| Cluster]) Compl. | Compl.
Test||Cluster|Cluster||Compl.|Compl. 1 0.69) 0.70| 0.68 0.61
1|| 0.71| 0.64|| 0.68| 0.59 2 0.1 065, 0.68 0.6l
3 0.79 0.72 0.67 0.59
2 0.80| 0.84 0.67 0.64
4 0.81] 0.83 0.67 0.64
3 0.61] 0.75 0.64 0.58
5 0.64] 0.72|| 0.64| 0.58
4 0.66 0.61 0.70 0.59
6 0.71 0.68 0.67 0.56
5 0.77/ 0.81 0.66 0.63
7 0.68 0.61 0.71 0.59
6| 0.79| 0.63|| 0.69] 0.52
8 0.76| 0.80| 0.67| 0.62
7 0.68 0.65 0.72 0.61
9 0.71] 0.72 0.68 0.61
8 0.73 0.72 0.67 0.61
M 0.72 071 0.68 0.60 10 0.74] 0.79 0.66 0.61
can = : : : 11| 0.78| 0.63| 0.69] 0.52
Mean 0.73 0.71 0.67 0.59

(c) Cut-off 0.7 (d) Cut-off 0.8
Table 2. Classification accuracy for each cluster and complement, at different cut-off
levels. The average of the cluster averages is given in the last row. The greater of each
pair of comparable accuracies is shown in bold.

However, for 5 out of 11 clusters at cut-off level 0.8, the situation is more
problematic. When we consider cluster 2 at cut-off level 0.8, we observe a different
situation: each classifier achieves higher accuracy on the test set corresponding
with its own training set. The cluster classifier performs better on the cluster
test set (0.71 versus 0.65), while the complement classifier performs better on
the complement test set (0.68 versus 0.61). This indicates a bias in the classifiers
to the test set corresponding with their own training set, which compromises the
generalizability. We observe the same situation for a further 4 clusters out of 11
at cut-off level 0.8, and at cut-off level 0.5, the bias even manifests itself for all
clusters.

We consider the average of the classification accuracies over all clusters as
the criterion to decide whether a posteriori agreement is sufficient to call the
results generalizable. If the mean cluster classification accuracy is higher for the
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cluster test set and the mean complement classification accuracy higher for the
complement test set, a posteriori agreement is insufficient. It then seems that
in general, classifiers expose a bias towards the test set corresponding to the
training set the classifier was trained on. For our experiments, that observation
holds for all cut-off levels, as can be seen in the last row of the subtables of table
2. As a consequence, a posteriori agreement is insufficient to call a classifier as
outlined in this article generalizable to a broader audience.

Although the accuracies on different test sets are incomparable, it seems
that the complement classifier consistently performs better on the cluster test
set than the cluster classifier on the complement test set. That may indicate that
the complement classifier generally has a stronger prediction ability, even after
subsampling. Further research is required to verify that hypothesis.

It seems that an increased cut-off level results in more clusters for which the
complement classifier performs better on the cluster test set than the cluster
classifier. With cut-off 0.5, this is nowhere the case, for 0.6 for 2 clusters, 3
clusters for 0.7 and and 6 for cut-off 0.8. Due to a redivision in folds per cut-
off level, the classification accuracies are incomparable across levels. However,
future work will establish whether this trend generally holds.

5 Conclusions and further work

NLP-problems customarily require some sort of inter-annotator agreement to be
determined prior to performing classification experiments. The degree of agree-
ment can then be seen as a quality measure for a data set. However, in a domain
that is as potentially sensitive to annotator bias as readability, standard inter-
annotator agreement statistics seem inadequate, as it is not unproblematic to
simply average out the available data. Furthermore, in a data set consisting of
a large number of sources supplying only a partial assessment of the data, such
agreement measures quickly become more or less meaningless due to the relative
sparsity of overlapping data points. To overcome these issues, we have devel-
oped a method to determine the generalizability of the classification method
after training and testing. Determining a posteriori agreement is useful for data
sets with low a priori agreement or when determining a priori agreement is prob-
lematic.

For the learning method and data set used in this article, we found insuffi-
cient a posteriori agreement, so further analysis is needed in order to determine
whether a way to find consensus among experts is crucial, or whether a different
combination of learning methods and feature sets must be used.

Future work includes further development of readability prediction systems
and methodologies. We will extend the feature set used to predict readability
and perform experiments with a range of classification and regression methods.
We will also further extend our data set by collecting more assessments from
experts, and by adding new texts to our corpus. We will use the method outlined
in this article to assess the quality of the newly collected data, as well as the
overall accuracy. Apart from the difference in classification accuracy, we will look
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into other informative measures to determine the generalizability of readability
prediction systems.
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