358 research outputs found

    Atomic Model of Susy Hubbard Operators

    Full text link
    We apply the recently proposed susy Hubbard operators to an atomic model. In the limiting case of free spins, we derive exact results for the entropy which are compared with a mean field + gaussian corrections description. We show how these results can be extended to the case of charge fluctuations and calculate exact results for the partition function, free energy and heat capacity of an atomic model for some simple examples. Wavefunctions of possible states are listed. We compare the accuracy of large N expansions of the susy spin operators with those obtained using `Schwinger bosons' and `Abrikosov pseudo-fermions'. For the atomic model, we compare results of slave boson, slave fermion, and susy Hubbard operator approximations in the physically interesting but uncontrolled limiting case of N->2. For a mixed representation of spins we estimate the accuracy of large N expansions of the atomic model. In the single box limit, we find that the lowest energy saddle-point solution reduces to simply either slave bosons or slave fermions, while for higher boxes this is not the case. The highest energy saddle-point solution has the interesting feature that it admits a small region of a mixed representation, which bears a superficial resemblance to that seen experimentally close to an antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision

    A posteriori agreement as a quality measure for readability prediction systems

    Get PDF
    All readability research is ultimately concerned with the research question whether it is possible for a prediction system to automatically determine the level of readability of an unseen text. A significant problem for such a system is that readability might depend in part on the reader. If different readers assess the readability of texts in fundamentally different ways, there is insufficient a priori agreement to justify the correctness of a readability prediction system based on the texts assessed by those readers. We built a data set of readability assessments by expert readers. We clustered the experts into groups with greater a priori agreement and then measured for each group whether classifiers trained only on data from this group exhibited a classification bias. As this was found to be the case, the classification mechanism cannot be unproblematically generalized to a different user group

    Quantum Phase Transitions and the Extended Coupled Cluster Method

    Get PDF
    We discuss the application of an extended version of the coupled cluster method to systems exhibiting a quantum phase transition. We use the lattice O(4) non-linear sigma model in (1+1)- and (3+1)-dimensions as an example. We show how simple predictions get modified, leading to the absence of a phase transition in (1+1) dimensions, and strong indications for a phase transition in (3+1) dimensions

    Charge and spin configurations in the coupled quantum dots with Coulomb correlations induced by tunneling current

    Full text link
    We investigated the peculiarities of non-equilibrium charge states and spin configurations in the system of two strongly coupled quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. We analyzed the modification of non-equilibrium charge states and different spin configurations of the system in a wide range of applied bias voltage and revealed well pronounced ranges of system parameters where negative tunneling conductivity appears due to the Coulomb correlations.Comment: 10 pages, 6 figure

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Higher-Spin Theory and Space-Time Metamorphoses

    Full text link
    Introductory lectures on higher-spin gauge theory given at 7 Aegean workshop on non-Einstein theories of gravity. The emphasis is on qualitative features of the higher-spin gauge theory and peculiarities of its space-time interpretation. In particular, it is explained that Riemannian geometry cannot play a fundamental role in the higher-spin gauge theory. The higher-spin symmetries are argued to occur at ultra high energy scales beyond the Planck scale. This suggests that the higher-spin gauge theory can help to understand Quantum Gravity. Various types of higher-spin dualities are briefly discussed.Comment: 37 pages, no figures; V2: references adde

    Efficacy and Safety of Radium-223 Dichloride in Symptomatic Castration-resistant Prostate Cancer Patients With or Without Baseline Opioid Use From the Phase 3 ALSYMPCA Trial

    Get PDF
    Background: The phase 3 ALSYMPCA trial enrolled metastatic castration-resistant prostate cancer patients with or without baseline opioid use. Objective: To assess the efficacy and safety of radium-223 dichloride (radium-223) versus placebo in ALSYMPCA patients by baseline opioid use. Design, setting, and participants: Nine hundred and twenty one patients enrolled at 136 centers globally. Intervention: Radium-223 (50 kBq/kg, intravenous injection) every 4 wk for six cycles or matching placebo, each plus best standard of care. Outcome measurements and statistical analysis: Primary endpoint (overall survival [OS]), main secondary efficacy endpoints, and safety were evaluated by baseline opioid use. Additional analyses included time to first opioid use, time to first external beam radiation therapy for bone pain, and safety of concomitant external beam radiation therapy. Results and limitations: At baseline, 408 (44%) patients had no pain and no analgesic use or mild pain with nonopioid therapy (World Health Organization ladder pain score 0–1 [nonopioid subgroup]), and 513 (56%) had moderate pain with occasional opioids or severe pain with regular daily opioids (World Health Organization ladder pain score 2–3 [opioid subgroup]). Radium-223 significantly prolonged OS versus placebo in nonopioid (hazard ratio [HR] = 0.70; 95% confidence interval [CI]: 0.52–0.93; p = 0.013) and opioid (HR = 0.68; 95% CI: 0.54–0.86; p = 0.001) subgroups, and significantly reduced risk of symptomatic skeletal events versus placebo, regardless of baseline opioid use (nonopioid subgroup: HR = 0.56, 95% CI: 0.39– 0.82, p = 0.002; opioid subgroup: HR = 0.72, 95% CI: 0.53–0.98, p = 0.038). Time to first opioid use for bone pain was significantly delayed with radium-223 versus placebo (HR = 0.62, 95% CI: 0.46–0.85, p = 0.002). Adverse event incidences were similar between opioid subgroups. Conclusions: Radium-223 versus placebo significantly prolonged OS and reduced symptomatic skeletal event risk with a favorable safety profile in castration-resistant prostate cancer patients with symptomatic bone metastases, regardless of baseline opioid use. Patient summary: In this ALSYMPCA opioid subgroup analysis, baseline symptom levels did not appear to impact radium-223 dichloride efficacy or safet

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Geomorphological effectiveness of floods to rework gravel bars:insight from hyperscale topography and hydraulic modelling

    Get PDF
    Bars are key morphological units in river systems, fashioning the sediment regime and bedload transport processes within a reach. Reworking of these features underpins channel adjustment at larger scales, thereby acting as a key determinant of channel stability. Despite their importance to channel evolution, few investigations have acquired spatially continuous data on bar morphology and sediment‐size to investigate bar reworking. To this end, four bars along a 10 km reach of a wandering gravel‐bed river were surveyed with Terrestrial Laser Scanning (TLS), capturing downstream changes in slope, bed material size and channel planform. Detrended standard deviations (σz) were extracted from TLS point clouds and correlated to underlying physically measured median grain‐size (D50), across a greater range of σz values than have hitherto been reported. The resulting linear regression model was used to create a 1 m resolution median grain‐size map. A fusion of airborne LiDAR and optical‐empirical bathymetric mapping was used to develop reach‐scale Digital Elevation Models (DEMs) for rapid two‐dimensional hydraulic modelling using JFlowÂź software. The ratio of dimensionless shear stress over critical shear stress was calculated for each raster cell to calculate the effectiveness of a range of flood events (2.33‐100 year recurrence intervals) to entrain sediment and rework bar units. Results show that multiple bar forming discharges exist, whereby frequent flood flows rework tail and back‐channel areas, whilst much larger, less frequent floods are required to mobilise the coarser sediment fraction on bar heads. Valley confinement is shown to exert a primary influence on patterns of bar reworking. Historical aerial photography, hyperscale DEMs and hydraulic modelling are used to explain channel adjustment at the reach scale. The proportion of the bar comprised of more frequently entrained units (tail, back channel, supra‐platform) relative to more static units (bar head) exerts a direct influence upon geomorphic sensitivity

    Interplay of quantum magnetic and potential scattering around Zn or Ni impurity ions in superconducting cuprates

    Full text link
    To describe the scattering of superconducting quasiparticles from non-magnetic (Zn) or magnetic (Ni) impurities in optimally doped high Tc_c cuprates, we propose an effective Anderson model Hamiltonian of a localized electron hybridizing with dx2−y2d_{x^2-y^2}-wave BCS type superconducting quasiparticles with an attractive scalar potential at the impurity site. Due to the strong local antiferromagnetic couplings between the original Cu ions and their nearest neighbors, the localized electron in the Ni-doped materials is assumed to be on the impurity sites, while in the Zn-doped materials the localized electron is distributed over the four nearest neighbor sites of the impurities with a dominant dx2−y2d_{x^2-y^2} symmetric form of the wave function. With Ni impurities, two resonant states are formed above the Fermi level in the local density of states at the impurity site, while for Zn impurities a sharp resonant peak below the Fermi level dominates in the local density of states at the Zn site, accompanied by a small and broad resonant state above the Fermi level mainly induced by the potential scattering. In both cases, there are no Kondo screening effects. The local density of states and their spatial distribution at the dominant resonant energy around the substituted impurities are calculated for both cases, and they are in good agreement with the experimental results of scanning tunneling microscopy in Bi2_2Sr2_2CaCu2_2O8+ή_{8+\delta} with Zn or Ni impurities, respectively.Comment: 24 pages, Revtex, 8 figures, submitted to Physical Review B for publication. Sub-ject Class: Superconductivity; Strongly Correlated Electron
    • 

    corecore