2,087 research outputs found

    Social regulation of gene expression in human leukocytes

    Get PDF
    Analysis of differentially expressed in circulating leukocytes from people who chronically experienced high versus low levels of subjective social isolation (loneliness) revealed over-expression of some anti-inflammatory genes and under-expression of some pro-inflammatory genes

    Observations and Implications of the Star Formation History of the LMC

    Full text link
    We present derivations of star formation histories based on color-magnitude diagrams of three fields in the LMC from HST/WFPC2 observations. A significant component of stars older than 4 Gyr is required to match the observed color-magnitude diagrams. Models with a dispersion-free age-metallicity relation are unable to reproduce the width of the observed main sequence; models with a range of metallicity at a given age provide a much better fit. Such models allow us to construct complete ``population boxes'' for the LMC based entirely on color-magnitude diagrams; remarkably, these qualitatively reproduce the age-metallicity relation observed in LMC clusters. We discuss some of the uncertainties in deriving star formation histories. We find, independently of the models, that the LMC bar field has a larger relative component of older stars than the outer fields. The main implications suggested by this study are: 1) the star formation history of field stars appears to differ from the age distribution of clusters, 2) there is no obvious evidence for bursty star formation, but our ability to measure bursts shorter in duration than \sim 25% of any given age is limited by the statistics of the observed number of stars, 3) there may be some correlation of the star formation rate with the last close passage of the LMC/SMC/Milky Way, but there is no dramatic effect, and 4) the derived star formation history is probably consistent with observed abundances, based on recent chemical evolution models.Comment: Accepted by AJ, 36 pages including 12 figure

    Validity, practical utility, and reliability of the activPAL in preschool children

    Get PDF
    <p>Purpose: With the increasing global prevalence of childhood obesity, it is important to have appropriate measurement tools for investigating factors (e.g. sedentary time) contributing to positive energy balance in early childhood. For pre-school children, single unit monitors such as the activPALTM are promising. However, validation is required as activity patterns differ from adults.</p> <p>Methods: Thirty pre-school children participated in a validation study. Children were videoed for one hour undertaking usual nursery activity while wearing an activPALTM. Video (criterion method) was analyzed on a second-by-second basis to categorise posture and activity. This was compared with the corresponding activPALTM output. In a subsequent sub-study investigating practical utility and reliability, 20 children wore an activPALTM for seven consecutive 24-hour periods.</p> <p>Results: A total of 97,750 seconds of direct observation from 30 children were categorized as sit/lie (46%), stand (35%), walk (16%); with 3% of time in nonsit/lie/upright postures (e.g. crawl/crouch/kneel-up). Sensitivity for the overall total time matched seconds detected as activPALTM ‘sit/lie’ was 86.7%, specificity 97.1%, and positive predictive value (PPV) 96.3%. For individual children, the median (interquartile range) sensitivity for activPALTM sit/lie was 92.8% (76.1-97.4), specificity 97.3% (94.9-99.2), PPV 97.0% (91.5-99.1). The activPALTM underestimated total time spent sitting (mean difference -4.4%, p<0.01), and overestimated time standing (mean difference 7.1%, p<0.01). There was no difference in overall % time categorised as ‘walk’ (p=0.2). The monitors were well tolerated by children during a seven day period of free-living activity. In the reliability study, at least five days of monitoring were required to obtain an intraclass correlation coefficient of ≥0.8 for time spent sit/lie according to activPALTM output.</p> <p>Conclusion: The activPAL had acceptable validity, practical utility, and reliability for the measurement of posture and activity during freeliving activities in pre-school children.</p&gt

    Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study

    Get PDF
    Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly

    Theory of Circle Maps and the Problem of One-Dimensional Optical Resonator with a Periodically Moving Wall

    Full text link
    We consider the electromagnetic field in a cavity with a periodically oscillating perfectly reflecting boundary and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-known results in the theory of circle maps (which we review briefly) imply that there are intervals of parameters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive measure set of parameters where the energy remains bounded.Comment: 34 pages LaTeX (revtex) with eps figures, PACS: 02.30.Jr, 42.15.-i, 42.60.Da, 42.65.Y

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (XX^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all XX^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the XX^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different XX^- states unbind are surprisingly small compared to the well width, the observation of strongly bound XX^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of XX^- recombination

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.010137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.710157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure
    corecore