29,178 research outputs found

    Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

    Get PDF
    Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments

    A Review on Pressure Ulcer: Aetiology, Cost, Detection and Prevention Systems

    Get PDF
    Pressure ulcer (also known as pressure sore, bedsore, ischemia, decubitus ulcer) is a global challenge for today’s healthcare society. Found in several locations in the human body such as the sacrum, heel, back of the head, shoulder, knee caps, it occurs when soft tissues are under continuous loading and a subject’s mobility is restricted (bedbound/chair bound). Blood flow in soft tissues becomes insufficient leading to tissue necrosis (cell death) and pressure ulcer. The subject’s physiological parameters (age, body mass index) and types of body support surface materials (mattress) are also factors in the formation of pressure ulcer. The economic impacts of these are huge, and the subject’s quality of life is reduced in many ways. There are several methods of detecting and preventing ulceration in human body. Detection depends on assessing local pressure on tissue and prevention on scales of risk used to assess a subject prior to admission. There are also various types of mattresses (air cushioned/liquid filled/foam) available to prevent ulceration. But, despite this work, pressure ulcers remain common.This article reviews the aetiology, cost, detection and prevention of these ulcers

    APPLICATION OF THE MODULARIZATION CONCEPT TO SATELLITE TAPE RECORDERS

    Get PDF
    Application of the modularization concept to satellite tape recorder

    Dark-Halo Cusp: Asymptotic Convergence

    Full text link
    We propose a model for how the buildup of dark halos by merging satellites produces a characteristic inner cusp, of a density profile \rho \prop r^-a with a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of a<1 exerts tidal compression which prevents local deposit of satellite material; the satellite sinks intact into the halo center thus causing a rapid steepening to a>1. Using merger N-body simulations, we learn that this cusp is stable under a sequence of mergers, and derive a practical tidal mass-transfer recipe in regions where the local slope of the halo profile is a>1. According to this recipe, the ratio of mean densities of halo and initial satellite within the tidal radius equals a given function psi(a), which is significantly smaller than unity (compared to being 1 according to crude resonance criteria) and is a decreasing function of a. This decrease makes the tidal mass transfer relatively more efficient at larger a, which means steepening when a is small and flattening when a is large, thus causing converges to a stable solution. Given this mass-transfer recipe, linear perturbation analysis, supported by toy simulations, shows that a sequence of cosmological mergers with homologous satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1. The slope depends only weakly on the fluctuation power spectrum, in agreement with cosmological simulations. During a long interim period the profile has an NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough compact satellite remnants make it intact into the inner halo. In order to maintain a flat core, satellites must be disrupted outside the core, possibly as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres

    Measuring the Cosmic Equation of State with Counts of Galaxies

    Full text link
    The classical dN/dz test allows the determination of fundamental cosmological parameters from the evolution of the cosmic volume element. This test is applied by measuring the redshift distribution of a tracer whose evolution in number density is known. In the past, ordinary galaxies have been used as such a tracer; however, in the absence of a complete theory of galaxy formation, that method is fraught with difficulties. In this paper, we propose studying instead the evolution of the apparent abundance of dark matter halos as a function of their circular velocity, observable via the linewidths or rotation speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth distribution of galaxies to be determined at both z~1 and the present day. In the course of studying this test, we have devised a rapid, improved semi-analytic method for calculating the circular velocity distribution of dark halos based upon the analytic mass function of Sheth et al. (1999) and the formation time distribution of Lacey & Cole (1993). We find that if selection effects are well-controlled and minimal external constraints are applied, the planned DEEP Redshift Survey should allow the measurement of the cosmic equation-of-state parameter w to 10% (as little as 3% if Omega_m has been well-determined from other observations). This type of test has the potential also to provide a constraint on any evolution of w such as that predicted by ``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters. A greatly improved error analysis has been added, along with a figure showing complementarity to other cosmological test

    Korean War Heroes

    Get PDF

    Age, Metallicity, and the Distance to the Magellanic Clouds From Red Clump Stars

    Get PDF
    We show that the luminosity dependence of the red clump stars on age and metallicity can cause a difference of up to < ~0.6 mag in the mean absolute I magnitude of the red clump between different stellar populations. We show that this effect may resolve the apparent ~0.4 mag discrepancy between red clump-derived distance moduli to the Magellanic Clouds and those from, e.g., Cepheid variables. Taking into account the population effects on red clump luminosity, we determine a distance modulus to the LMC of 18.36 +/- 0.17 mag, and to the SMC of 18.82 +/- 0.20 mag. Our alternate red clump LMC distance is consistent with the value (m-M){LMC} = 18.50 +/- 0.10 adopted by the HST Cepheid Key Project. We briefly examine model predictions of red clump luminosity, and find that variations in helium abundance and core mass could bring the Clouds closer by some 0.10--0.15 mag, but not by the ~0.4 mag that would result from setting the mean absolute I-magnitude of the Cloud red clumps equal to the that of the Solar neighborhood red clump.Comment: Accepted for publication in The Astrophysical Journal Letters, AASTeX 4.0, 10 pages, 1 postscript figur

    Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks

    Full text link
    The confinement of energetic particles (EP) is crucial for an efficient heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE) can redistribute the EP population making the plasma heating less effective, and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic particle-in-cell code ORB5, within the NEMORB project. The nonperturbative nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is studied. In particular, we focus on the nonlinear modification of the frequency, growth rate and radial structure of the TAE, depending on the evolution of the EP distribution in phase space. For the ITPA benchmark case, we find that the frequency increases when the growth rate decreases, and the mode shrinks radially. This nonlinear evolution is found to be correctly reproduced by means of a quasilinear model, namely a model where the linear effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio

    A prospective longitudinal study of perceived infant outcomes at 18-24 months: Neural and psychological correlates of parental thoughts and actions assessed during the first month postpartum

    Get PDF
    The first postpartum months constitute a critical period for parents to establish an emotional bond with their infants. Neural responses to infant-related stimuli have been associated with parental sensitivity. However, the associations among these neural responses, parenting, and later infant outcomes for mothers and fathers are unknown. In the current longitudinal study, we investigated the relationships between parental thoughts/actions and neural activation in mothers and fathers in the neonatal period with infant outcomes at the toddler stage. At the first month postpartum, mothers (n=21) and fathers (n=19) underwent a neuroimaging session during which they listened to their own and unfamiliar baby’s cry. Parenting-related thoughts/behaviors were assessed by interview twice at the first month and 3-4 months postpartum and infants’ socioemotional outcomes were reported by mothers and fathers at 18-24 months postpartum. In mothers, higher levels of anxious thoughts/actions about parenting at the first month postpartum, but not at 3-4 months postpartum, were associated with infant’s low socioemotional competencies at 18-24 months. Anxious thoughts/actions were also associated with heightened responses in the motor cortex and reduced responses in the substantia nigra to own infant cry sounds. On the other hand, in fathers, higher levels of positive perception of being a parent at the first month postpartum, but not at 3-4 months postpartum, were associated with higher infant socioemotional competencies at 18-24 months. Positive thoughts were associated with heightened responses in the auditory cortex and caudate to own infant cry sounds. The current study provides evidence that parental thoughts are related to concurrent neural responses to their infants at the first month postpartum as well as their infant’s future socioemotional outcome at 18-24 months. Parent differences suggest that anxious thoughts in mothers and positive thoughts in fathers may be the targets for parenting-focused interventions very early postpartum
    corecore