26,387 research outputs found

    Quantifying critical thinking: Development and validation of the Physics Lab Inventory of Critical thinking (PLIC)

    Full text link
    Introductory physics lab instruction is undergoing a transformation, with increasing emphasis on developing experimentation and critical thinking skills. These changes present a need for standardized assessment instruments to determine the degree to which students develop these skills through instructional labs. In this article, we present the development and validation of the Physics Lab Inventory of Critical thinking (PLIC). We define critical thinking as the ability to use data and evidence to decide what to trust and what to do. The PLIC is a 10-question, closed-response assessment that probes student critical thinking skills in the context of physics experimentation. Using interviews and data from 5584 students at 29 institutions, we demonstrate, through qualitative and quantitative means, the validity and reliability of the instrument at measuring student critical thinking skills. This establishes a valuable new assessment instrument for instructional labs.Comment: 16 pages, 4 figure

    Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

    Get PDF
    Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments

    A Review on Pressure Ulcer: Aetiology, Cost, Detection and Prevention Systems

    Get PDF
    Pressure ulcer (also known as pressure sore, bedsore, ischemia, decubitus ulcer) is a global challenge for today’s healthcare society. Found in several locations in the human body such as the sacrum, heel, back of the head, shoulder, knee caps, it occurs when soft tissues are under continuous loading and a subject’s mobility is restricted (bedbound/chair bound). Blood flow in soft tissues becomes insufficient leading to tissue necrosis (cell death) and pressure ulcer. The subject’s physiological parameters (age, body mass index) and types of body support surface materials (mattress) are also factors in the formation of pressure ulcer. The economic impacts of these are huge, and the subject’s quality of life is reduced in many ways. There are several methods of detecting and preventing ulceration in human body. Detection depends on assessing local pressure on tissue and prevention on scales of risk used to assess a subject prior to admission. There are also various types of mattresses (air cushioned/liquid filled/foam) available to prevent ulceration. But, despite this work, pressure ulcers remain common.This article reviews the aetiology, cost, detection and prevention of these ulcers

    Beyond capitalism and liberal democracy: on the relevance of GDH Cole’s sociological critique and alternative

    Get PDF
    This article argues for a return to the social thought of the often ignored early 20th-century English thinker GDH Cole. The authors contend that Cole combined a sociological critique of capitalism and liberal democracy with a well-developed alternative in his work on guild socialism bearing particular relevance to advanced capitalist societies. Both of these, with their focus on the limitations on ‘free communal service’ in associations and the inability of capitalism to yield emancipation in either production or consumption, are relevant to social theorists looking to understand, critique and contribute to the subversion of neoliberalism. Therefore, the authors suggest that Cole’s associational sociology, and the invitation it provides to think of formations beyond capitalism and liberal democracy, is a timely and valuable resource which should be returned to

    Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method

    Get PDF
    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or jj(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the band-power spectrum and second order scale-scale correlation. We also present the DWT algorithm of the binning and Poisson sampling with real observational data. We show that the alias effect appeared in usual binning schemes can exactly be eliminated by the DWT binning. Since Poisson process possesses diagonal covariance in the DWT representation, the Poisson sampling and selection effects on the power spectrum and second order scale-scale correlation detection are suppressed into minimum. Moreover, the effect of the non-Gaussian features of the Poisson sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap

    Dual-probe decoherence microscopy: Probing pockets of coherence in a decohering environment

    Get PDF
    We study the use of a pair of qubits as a decoherence probe of a non-trivial environment. This dual-probe configuration is modelled by three two-level-systems which are coupled in a chain in which the middle system represents an environmental two-level-system (TLS). This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS which couples to two qubits at once.Comment: 29 pages, 10 figure

    The Bispectrum as a Signature of Gravitational Instability in Redshift-Space

    Get PDF
    The bispectrum provides a characteristic signature of gravitational instability that can be used to probe the Gaussianity of the initial conditions and the bias of the galaxy distribution. We study how this signature is affected by redshift distortions using perturbation theory and high-resolution numerical simulations. We obtain perturbative results for the multipole expansion of the redshift-space bispectrum which provide a natural way to break the degeneracy between bias and Ω\Omega present in measurements of the redshift-space power spectrum. We propose a phenomenological model that incorporates the perturbative results and also describes the bispectrum in the transition to the non-linear regime. We stress the importance of non-linear effects and show that inaccurate treatment of these can lead to significant discrepancies in the determination of bias from galaxy redshift surveys. At small scales we find that the bispectrum monopole exhibits a strong configuration dependence that reflects the velocity dispersion of clusters. Therefore, the hierarchical model for the three-point function does not hold in redshift-space.Comment: 19 pages, 4 figures. Revised version accepted for publication in Ap

    A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    Get PDF
    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator used in our experiments has a large optical mode area of ~100 {\mu}m2^2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2^2/Hz. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.Comment: 11 pages, 5 figure
    corecore