3,290 research outputs found

    Negligence—Assumption of Risk—Duplication of Scope of Duty or Contributory Negligence

    Get PDF

    Combined use of direct analysis in real-time/Orbitrap mass spectrometry and micro-Raman spectroscopy for the comprehensive characterization of real explosive samples

    Get PDF
    International audienceDirect Analysis in Real Time (DART™) high-resolution Orbitrap™ mass spectrometry (HRMS) in combination with Raman microscopy was used for the detailed molecular level characterization of explosives including not only the charge but also the complex matrix of binders, plasticizers, polymers, and other possible organic additives. A total of 15 defused military weapons including grenades, mines, rockets, submunitions, and mortars were examined. Swabs and wipes were used to collect trace (residual) amounts of explosives and their organic constituents from the defused military weapons and micrometer-size explosive particles were transferred using a vacuum suction-impact collection device (vacuum impactor) from wipe and swap samples to an impaction plate made of carbon. The particles deposited on the carbon plate were then characterized using micro-Raman spectroscopy followed by DART-HRMS providing fingerprint signatures of orthogonal nature. The optical microscope of the micro-Raman spectrometer was first used to localize and characterize the explosive charge on the impaction plate which was then targeted for identification by DART-HRMS analysis in both the negative and positive modes. Raman spectra of the explosives TNT, RDX and PETN were acquired from micrometer size particles and characterized by the presence of their characteristic Raman bands obtained directly at the surface of the impaction plate nondestructively without further sample preparation. Negative mode DART-HRMS confirmed the types of charges contained in the weapons (mainly TNT, RDX, HMX, and PETN; either as individual components or as mixtures). These energetic compounds were mainly detected as deprotonated species [M–H] − , or as adduct [M + 35 Cl] − , [M + 37 Cl] − , or [M + NO 3 ] − anions. Chloride adducts were promoted in the heated DART reagent gas by adding chloro-form vapors to the helium stream using an Bin-house^ delivery method. When the polarity was switched to positive mode, DART-HRMS revealed a very complex distribution of poly-meric binders (mainly polyethylene glycols and polypropylene glycols), plasticizers (e.g., dioctyl sebacate, tributyl phosphate), as well as wax-like compounds whose structural features could not be precisely assigned. In positive mode, compounds were identified either as protonated molecules or am-monium adduct species. These results clearly demonstrate the complementarity of micro-Raman microscopy combined with DART-MS. The former technique provides structural information on the type of explosives present at the surface of the sample, whereas the latter provides not only a confirmation of the nature of the explosive charge but also useful additional information regarding the nature of the complex organic matrix of binders, plasticizers, polymers, oils, and potentially other organic additives and contaminants present in the sample. Combining these two techniques provides a powerful tool for the screening, comprehensive characterization, and differentiation of particulate explosive samples for forensic sciences and homeland security applications

    The forest resources of rural householders in Dent County, Missouri

    Get PDF
    This bulletin reports on School of Forestry research project 124, Timber Economics--P. [3].Digitized 2007 AES.Includes bibliographical references (page 21)

    Observed and Expected Mortality in Cohort Studies

    Get PDF
    Epidemiologists often compare the observed number of deaths in a cohort with the expected number of deaths, obtained by multiplying person-time accrued in the cohort by mortality rates for a reference population (ideally, a reference that represents the mortality rate in the cohort in the absence of exposure). However, if exposure is hazardous (or salutary), this calculation will not consistently estimate the number of deaths expected in the absence of exposure because exposure will have affected the distribution of person-time observed in the study cohort. While problems with interpretation of this standard calculation of expected counts were discussed more than 2 decades ago, these discussions had little impact on epidemiologic practice. The logic of counterfactuals may help clarify this topic as we revisit these issues. In this paper, we describe a simple way to consistently estimate the expected number of deaths in such settings, and we illustrate the approach using data from a cohort study of mortality among underground miners

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species.</p> <p>Results</p> <p>Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems.</p> <p>Conclusion</p> <p>The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the reducing nature and prolonged environmental and biological lifetimes of the EPFRs in MCP230.</p

    NILC_USP: an improved hybrid system for sentiment analysis in Twitter messages.

    Get PDF
    This paper describes the NILC USP system that participated in SemEval-2014 Task 9: Sentiment Analysis in Twitter, a re-run of the SemEval 2013 task under the same name. Our system is an improved version of the system that participated in the 2013 task. This system adopts a hybrid classification process that uses three classification approaches: rule-based, lexiconbased and machine learning. We suggest a pipeline architecture that extracts the best characteristics from each classifier. In this work, we want to verify how\ud this hybrid approach would improve with better classifiers. The improved system achieved an F-score of 65.39% in the Twitter message-level subtask for 2013 dataset (+ 9.08% of improvement) and 63.94% for 2014 dataset.FAPESPSAMSUN

    Cosmological perturbations on local systems

    Get PDF
    We study the effect of cosmological expansion on orbits--galactic, planetary, or atomic--subject to an inverse-square force law. We obtain the laws of motion for gravitational or electrical interactions from general relativity--in particular, we find the gravitational field of a mass distribution in an expanding universe by applying perturbation theory to the Robertson-Walker metric. Cosmological expansion induces an (a¨/a)r⃗\ddot a/a) \vec r force where a(t)a(t) is the cosmological scale factor. In a locally Newtonian framework, we show that the (a¨/a)r⃗(\ddot a/a) \vec r term represents the effect of a continuous distribution of cosmological material in Hubble flow, and that the total force on an object, due to the cosmological material plus the matter perturbation, can be represented as the negative gradient of a gravitational potential whose source is the material actually present. We also consider the effect on local dynamics of the cosmological constant. We calculate the perihelion precession of elliptical orbits due to the cosmological constant induced force, and work out a generalized virial relation applicable to gravitationally bound clusters.Comment: 10 page

    Persistent global marine euxinia in the early Silurian

    Get PDF
    The second pulse of the Late Ordovician mass extinction occurred around the Hirnantian-Rhuddanian boundary (~444 Ma) and has been correlated with expanded marine anoxia lasting into the earliest Silurian. Characterization of the Hirnantian ocean anoxic event has focused on the onset of anoxia, with global reconstructions based on carbonate δ238U modeling. However, there have been limited attempts to quantify uncertainty in metal isotope mass balance approaches. Here, we probabilistically evaluate coupled metal isotopes and sedimentary archives to increase constraint. We present iron speciation, metal concentration, δ98Mo and δ238U measurements of Rhuddanian black shales from the Murzuq Basin, Libya. We evaluate these data (and published carbonate δ238U data) with a coupled stochastic mass balance model. Combined statistical analysis of metal isotopes and sedimentary sinks provides uncertainty-bounded constraints on the intensity of Hirnantian-Rhuddanian euxinia. This work extends the duration of anoxia to &gt;3 Myrs – notably longer than well-studied Mesozoic ocean anoxic events

    Incremented alkyl derivatives enhance collision induced glycosidic bond cleavage in mass spectrometry of disaccharides

    Get PDF
    Electrospray ionization and collision induced dissociation on a triple quadrupole mass spectrometer were used to determine the effect of spatial crowding of incremented alkyl groups of two anomeric pairs of peralkylated (methyl to pentyl) disaccharides (maltose/cellobiose and isomaltose/gentiobiose). Protonated molecules were generated which underwent extensive fragmentation under low energy conditions. For both the 1 → 4 and 1 → 6 α and β isomers, at comparable collision energies the methyl derivative exhibited the least fragmentation followed by ethyl, propyl, butyl, and pentyl. Collision energy is converted to rotational-vibrational modes in competition with bond cleavage, as represented by the slope of product/parent ion (D/P) ratio versus offset energy. Variable rotational freedom at the glycosidic linkage with incremented alkyl groups is hypothesized to be responsible for this effect. Discrimination of anomeric configuration was also assessed for these stereoiosmeric disaccharides. A systematic study showed that an increasing discrimination was attained for the 1 → 4 isomeric pair as the size of the derivative increased from methyl to pentyl. No anomeric discrimination was attained for the 1 → 6 isomeric pair. Parent and product ion scans confirmed the consistency of fragmentation pathways among derivatives. Chem-X and MM3 molecular modeling programs were used to obtain minimum energy structures and freedom of motion volumes for the permethylated disaccharides. The modeling results correlated with the fragmentation ratios obtained in the mass spectrometer giving strong indication that the collision induced spectra are dependent on the freedom of rotational motion around the glycosidic bond. © 2003 American Society for Mass Spectrometry
    • …
    corecore