3,920 research outputs found

    Experimental Hamiltonian Identification for Qubits subject to Multiple Independent Control Mechanisms

    Get PDF
    We consider a qubit subject to various independent control mechanisms and present a general strategy to identify both the internal Hamiltonian and the interaction Hamiltonian for each control mechanism, relying only on a single, fixed readout process such as σz\sigma_z measurements.Comment: submitted to Proceedings of the QCMC04 (4 pages RevTeX, 5 figures

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    Close Pairs as Proxies for Galaxy Cluster Mergers

    Full text link
    Galaxy cluster merger statistics are an important component in understanding the formation of large-scale structure. Unfortunately, it is difficult to study merger properties and evolution directly because the identification of cluster mergers in observations is problematic. We use large N-body simulations to study the statistical properties of massive halo mergers, specifically investigating the utility of close halo pairs as proxies for mergers. We examine the relationship between pairs and mergers for a wide range of merger timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of pairs in measuring merger bias. While pairs at very small separations will reliably merge, these constitute a small fraction of the total merger population. Thus, pairs do not provide a reliable direct proxy to the total merger population. We do find an intriguing universality in the relation between close pairs and mergers, which in principle could allow for an estimate of the statistical merger rate from the pair fraction within a scaled separation, but including the effects of redshift space distortions strongly degrades this relation. We find similar behavior for galaxy-mass halos, making our results applicable to field galaxy mergers at high redshift. We investigate how the halo merger rate can be statistically described by the halo mass function via the merger kernel (coagulation), finding an interesting environmental dependence of merging: halos within the mass resolution of our simulations merge less efficiently in overdense environments. Specifically, halo pairs with separations less than a few Mpc/h are more likely to merge in underdense environments; at larger separations, pairs are more likely to merge in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant additions to text and two figures changed. Added new findings on the universality of pair mergers and added analysis of the effect of FoF linking length on halo merger

    The ACS LCID Project XI. On the early time resolution of LG dwarf galaxy SFHs: Comparing the effects of reionization in models with observations

    Get PDF
    The analysis of the early star formation history (SFH) of nearby galaxies, obtained from their resolved stellar populations is relevant as a test for cosmological models. However, the early time resolution of observationally derived SFHs is limited by several factors. Thus, direct comparison of observationally derived SFHs with those derived from theoretical models of galaxy formation is potentially biased. Here we investigate and quantify this effect. For this purpose, we analyze the duration of the early star formation activity in a sample of four Local Group dwarf galaxies and test whether they are consistent with being true fossils of the pre-reionization era; i.e., if the quenching of their star formation occurred before cosmic reionization by UV photons was completed. Two classical dSph (Cetus and Tucana) and two dTrans (LGS-3 and Phoenix) isolated galaxies with total stellar masses between 1.3×1061.3\times 10^6 to 7.2×1067.2\times 10^6 M⊙_\odot have been studied. Accounting for time resolution effects, the SFHs peak as much as 1.25 Gyr earlier than the optimal solutions. Thus, this effect is important for a proper comparison of model and observed SFHs. It is also shown that none of the analyzed galaxies can be considered a true-fossil of the pre-reionization era, although it is possible that the {\it outer regions} of Cetus and Tucana are consistent with quenching by reionization.Comment: To be published by the Ap

    Wind Effects on Near- and Midfield Mixing in Tidally Pulsed River Plumes

    Get PDF
    River plumes transport and mix land-based tracers into the ocean. In tidally pulsed river plumes, wind effects have long been considered negligible in modulating interfacial mixing in the energetic nearfield region. This research tests the influence of variable, realistic winds on mixing in the interior plume. A numerical model of the Merrimack River plume-shelf system is utilized, with an application of the salinity variance approach employed to identify spatial and temporal variation in advection, straining, and dissipation (mixing) of vertical salinity variance (stratification). Results indicate that moderate wind stresses (∌0.5 Pa) with a northward component countering the downcoast rotation of the plume are most effective at decreasing stratification in the domain relative to other wind conditions. Northward winds advect plume and ambient shelf stratification offshore, allowing shelf water salinity to increase in the nearshore, which strengthens the density gradient at the plume base. Straining in the plume increases with winds enhancing offshore-directed surface velocities, leading to increased shear at the plume base. Increased straining and larger density gradients at the plume base enhance variance dissipation in the near- and midfield plume, and dissipation remains enhanced if the shelf is clear of residual stratification. The smaller spatial and temporal scales of the Merrimack plume allow the mechanisms to occur at tidal time scales in direct response to instantaneous winds. This is the first study to show tidal time scale wind-induced straining and advection as controlling factors on near- and midfield mixing rates in river plumes under realistic winds

    Freshwater Composition and Connectivity of the Connecticut River Plume During Ambient Flood Tides

    Get PDF
    The Connecticut River plume interacts with the strong tidal currents of the ambient receiving waters in eastern Long Island Sound. The plume formed during ambient flood tides is studied as an example of tidal river plumes entering into energetic ambient tidal environments in estuaries or continental shelves. Conservative passive freshwater tracers within a high-resolution nested hydrodynamic model are applied to determine how source waters from different parts of the tidal cycle contribute to plume composition and interact with bounding plume fronts. The connection to source waters can be cut off only under low-discharge conditions, when tides reverse surface flow through the mouth after max ambient flood. Upstream plume extent is limited because ambient tidal currents arrest the opposing plume propagation, as the tidal internal Froude number exceeds one. The downstream extent of the tidal plume always is within 20 km from the mouth, which is less than twice the ambient tidal excursion. Freshwaters in the river during the preceding ambient ebb are the oldest found in the new flood plume. Connectivity with source waters and plume fronts exhibits a strong upstream-to- downstream asymmetry. The arrested upstream front has high connectivity, as all freshwaters exiting the mouth immediately interact with this boundary. The downstream plume front has the lowest overall connectivity, as interaction is limited to the oldest waters since younger interior waters do not overtake this front. The offshore front and inshore boundary exhibit a downstream progression from younger to older waters and decreasing overall connectivity with source waters. Plume-averaged freshwater tracer concentrations and variances both exhibit an initial growth period followed by a longer decay period for the remainder of the tidal period. The plume-averaged tracer variance is increased by mouth inputs, decreased by entrainment, and destroyed by internal mixing. Peak entrainment velocities for younger waters are higher than values for older waters, indicating stronger entrainment closer to the mouth. Entrainment and mixing time scales (1–4 h at max ambient flood) are both shorter than half a tidal period, indicating entrainment and mixing are vigorous enough to rapidly diminish tracer variance within the plume

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    Identifying an Experimental Two-State Hamiltonian to Arbitrary Accuracy

    Get PDF
    Precision control of a quantum system requires accurate determination of the effective system Hamiltonian. We develop a method for estimating the Hamiltonian parameters for some unknown two-state system and providing uncertainty bounds on these parameters. This method requires only one measurement basis and the ability to initialise the system in some arbitrary state which is not an eigenstate of the Hamiltonian in question. The scaling of the uncertainty is studied for large numbers of measurements and found to be proportional to one on the square-root of the number of measurements.Comment: Minor corrections, Accepted for publication in Physical Review

    Identifying a Two-State Hamiltonian in the Presence of Decoherence

    Full text link
    Mapping the system evolution of a two-state system allows the determination of the effective system Hamiltonian directly. We show how this can be achieved even if the system is decohering appreciably over the observation time. A method to include various decoherence models is given and the limits of this technique are explored. This technique is applicable both to the problem of calibrating a control Hamiltonian for quantum computing applications and for precision experiments in two-state quantum systems. For simple models of decoherence, this method can be applied even when the decoherence time is comparable to the oscillation period of the system.Comment: 8 pages, 6 figures. Minor corrections, published versio

    A Conceptual Model for Navigating a Career Path in Medical School Leadership

    Full text link
    There is a paucity of literature providing guidance to physicians hoping to attain a position as a medical school dean. Realizing this gap, the Society for Academic Emergency Medicine (SAEM) Faculty Development Committee organized an educational session focused on offering faculty guidance for obtaining a position in medical school leadership. The session involved panelists who are nationally known leaders in medical school administration and was successfully presented at the SAEM 2018 annual meeting in Indianapolis, Indiana. Knowledge and perspective gained both during this session and through literature review was analyzed using a conceptual thinking skills framework. This process offered insights that promoted the development of a conceptual model informed by current evidence and expert insight and rooted in educational, economic, and cognitive theory. This model provides a step‐by‐step guide detailing a process that physicians can use to create a plan for professional development that is informed, thoughtful, and individualized to their own needs to optimize their future chances of advancing to a career in medical school leadership.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146843/1/aet210212.pd
    • 

    corecore