arXiv:quant-ph/0409107v1 17 Sep 2004

Experimental Hamiltonian Identification for Qubits subject
to Multiple Independent Control Mechanisms.

Sonia G. Schirmeér Avinash Kolli, Daniel K. L. Oi and Jared H. Cole

*Dept of Applied Maths and Theoretical Physics, University of Cambridge,
Wi berforce Rd, Cambridge, CB3 OWA, United Kingdom
TCentre for Quantum Computer Technology, School of Physics, University of Melbourne, Melbourne, Australia

Abstract. We consider a qubit subject to various independent contedhanisms and present a general strategy to identify
both the internal Hamiltonian and the interaction Hamikonfor each control mechanism, relying only on a single,dixe
readout process such &smeasurements.

1. INTRODUCTION

Realizing the ultimate goal of quantum information pro@ggsnamely building a working quantum computer, is to a
large extent a problem of finding ways to control the dynarofca quantum system precisely. A crucial prerequisite
for this task is one’s ability to accurately determine of dly@amics of the physical system and its response to external
(control) fields. Quantum process tomography (QPT), by iding a general procedure to identify the unitary (or
completely positive) processes acting on a system, adelrdisis problem but does not solve it completely.

One problematic aspect of QPT is the assumption that one>qaarimentally determine the expectation values
of a complete set of observables, or at least perfarbitrary single qubit measurements on a registenafubits.
Most QIP proposals rely on a single readout process, i.easarement in a fixed basis. For example, qubits encoded
in internal electronic states of trapped ions or neutrainat@are read out by quantum jump detection via a cycling
transition; readout for solid-state qubits based on Copparboxes, Josephson junctions, or electrons in doulelé-w
potentials usually involves charge localization usingyirelectron transistors or similar devices. Finally, daliate
architectures based on electron or nuclear spin qubitsxreceed to be limited t@; measurements via spin-charge
transfer.

It is usually assumed that local projective measuremendsfired basis are sufficient since arbitrary single qubit
measurements can then be realized by performing a locaryniransformation before measuring to achieve a change
of basis. However, implementing such a basis change rexjpiezise knowledge of the dynamics of each individual
gubit and its response to control fields in the first placeyérg information we seek to determine experimentally, and
which may be difficult tpredict precisely based on theoretical models and computer simoaalone, in particular
for systems that are sensitive to fabrication variance. ssjiide solution to this seemingly intractable problem was
described in [1]. In the following we outline the generalasbgy, discuss various ways of extracting the system
parameters from noisy experimental data, and illustragekdy steps using examples with simulated measurement
data.

2. GENERAL STRATEGY FOR HAMILTONIAN IDENTIFICATION

The state of a two-level system can be mapped to a Bloch vectioe., a real vector ifR3, with pure states
corresponding to points on the Bloch sphere, i.e., the seidéthe unit ball. On timescales sufficiently short comgare
to the decoherence time, the evolution of the system is gedeby a Hamiltonian, which can be written in terms of
the Pauli matrices for « € {x,y,z}, 2H = dol + dy0x + dy Gy + d,0;, wheredy, dy, dy andd, are real constants. If the
Hamiltonian remains constant fty <t < t;, the Bloch vector undergoes a rotation about the exis (dy,dy,d,).
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FIGURE 1. Left: Declinations@ and relative azimuthal angleg for two rotation axes. Right: Determination of the rotation
frequency and anglé of the rotation axis by mapping the precession of the stte

The length||d|| of this vector determines rotation frequency; the rotatiois can be specified by a unit vector
d = (sinBcosp, sin@sing,cosh) ", i.e., by two angle® and ¢ as shown in Fig. 1. To identify the parametels
dy andd, of the Hamiltonian it therefore suffices to determine thatioh frequency and the angl@sand¢. Sincedy
results only in an unobservable global phase factor, it esigibored.

If the system can be repeatedly initialized in a known statg,, one of the measurement basis st@g®r |1),
and then measured after having evolved for progressivelgdotime periods, we can map the trajectory of zthe
component of the Bloch vector, and extract the frequencyaange6 of the rotation as shown in Fig. 1 (right). For
some systems such as NMR-based schemes this may be suticigset phase relationship betwekranddy is fixed
by the phase relationship between the control fields. Inigértewever, a second series of measurements is necessary
to determine the horizontal angeof the rotation axis with respect to a reference akisThis procedure is given in
Ref. [1] and involves using the values 6fand||d|| determined in the first step to select a different initiatestand
mapping its precession about the desired rotation axis.

For a system subject to various control fiefgs(e.g., fields associated with different control electrgdesddition
to its free evolution, we must determine both its internafrtif®onianHg and the interaction Hamiltonidd, for each
independent control mechanism. Although we usually cadetérmine the interaction Hamiltonians directly since

we cannot switch off the internal dynamics, we can identify totation axisjgfﬁm =do+ féPdm corresponding to

the evolution of the system under the Hamiltonkg+ fr%k)l-]m for a fixed control settingm, = fr<nk). Repeating this

procedure for each available control fidld with several control field settingfi,(nk> then allows us to extract both the
internal and interaction parts of the Hamiltonian provitteat the dependence of the Hamiltonian on the control fields
is linear. (Nonlinear field effects require additional @mtion terms, and we will exclude this case in this paper.)

3. MAPPING z(t) AND EXTRACTING THE RELEVANT DATA

A crucial factor in the Hamiltonian identification strategytlined above is the mapping of the evolutionz() as

the system precesses around a fixed rotation axis. The agounith which we can identify the relevant parameters
such as the rotation frequency and an@ldepends on the total length of tinhefor which z(t) is mapped, the time
resolutionAt and the uncertainty of each data paifti) = (0z(t)), which depends on the number of timéseach
experiment is repeated to obtain the ensemble averagediticadto the frequency of measurement errors etc). The
total number of measurements required to rr@pis thusNy = Nets /At. The choice ofM, t+ andNe will depend both

on the system to be characterized and the method of datagsiréo be used.

One possible approach is to use a small time Atepnd a large number of repetitionk to obtain a dense set of
accurate data points for a period of time covering at leastcqprarter of the rotation period, and fit a cosine segment
to the data. Since the time we have to monitor the evolutiazitofis limited by the decoherence time of the system,
this approach may be useful for systems that decohere ydmdhuse it requires only sampling over a short period of
time.
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data for rotations abouty + f2<2)d2 with

g i fz(2> = 0.1. The dash-dot line indicates the

il optimal sampling timets determined by
| finding the maximum of the functiomP(t;)
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w=0.2828.
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Another approach, explained in detail in [1], is to use ey coarse time sampling, with a moderate nhumber
of repetitions for each data point, over several rotationogks to obtain a rough estimate of the rotation frequency
using the discrete Fourier transform, followed by a secdag of acquiring more accurate additional data points in
the region where the first minimum aft) is expected based on the first estimate, and fitting a parabote new
data to find the rotation frequency and declination of thatroh axis.

A third alternative [2] is to eliminate curve-fitting altoiiper and extract all the required information directly from
the Fourier transform. This method is rather elegant and doerequire the high time resolutidt and measurement
repetition rated\e usually necessary for curve-fitting methods. All we need/tiichaliasing is thafit be less than half
the rotation period’. Ensuring that this condition is satisfied requires a roughi@ri estimate ofT but this should
normally not be a problem. It also permits easy estimatiothefaccuracy of the parameters. However, since the
frequency resolutioAw = 271/t, we must be able to map the data for a least two complete dgchesable to extract
the rotation frequency, and more cycles will be requiredtitam a clearly defined peak in the frequency spectrum.
Hence, this method will be most suited to systems whose ageahbe time is sufficiently long to allow mapping of
the evolution ofz(t) over several cycles.

4. ILLUSTRATIVE EXAMPLE

To demonstrate the procedure, we choose a test systendyvith(0.2,0,0.1)", d; = (1,1,0)" andd, = (0,0,1)".
Fig. 2 illustrates how we identify the rotation frequenaesl declination angles fdg = 0 andf, = 0.1 following the
3rd approach outlined in Sec. 3. We sanwufte over several rotation periods with an intermediate timp &&= 0.25)
and a small number of repetitiord{= 10) for each measurement. We then obtain an estimate oftétérofrequency
by taking the Fourier transform of the data and finding thgdencycw, such thatF (wp)| = max,o|F («wh)|, where

F (wn) is thenth Fourier coefficient. Since the sampling period is usuadiyan integer multiple of the rotation period,
the peak in the Fourier spectrum will tend to be unsharp, andestimate inaccurate. To improve it, we compute
the functionP(tf) = [/, (wp) — Ry (Wp-1) — Ry (Wpr1)]/[Ry (Wp-1) + R, (wp41)] WhereR, is the Fourier transform
of the truncated data for @t <t; andwy, is the frequency where the first peak in the spectrum (&x@)) occurs,
IR (wp)| = maxy~o|R; (awn)]. P(tf) assumes a maximum whenis an integer multiple of the rotation period, thus
allowing us to find the optimal sampling tinte. Fig. 3 illustrates how we can find the horizontal ange$aving
identified the rotation frequencies and angdef®or all control settings, using a local curve fitting approaamilar to
the second strategy outlined in Sec. 3 and described in Ref-ipally, Fig. 4 shows how we can extraly anddm,

by plotting thex, y andz-components of the rotation axdg+ f,%k)drn versusfr(nk) for m= 1, 2 and fitting straight lines
to the data.
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Figure 3: The system is initialized in states; = | 093
(cosB,sinB,0)" (here B = —1.0446) by rotatingsy =
(0,0,1)" about the reference axis (hered) by a suitable
angley, and the precession sf aboutdg + fl(l)dl, whose
frequency and are already known, is mapped. Using a
small number of data points (stars) we find shiatercept

of z(t) (circle), which allows us to estimate the location of
the extrema og(t). Additional data points (dots) are then
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acquired in these regions, and parabolas fitted to the da ¢ _,, h

The desired angle = — 3 —arcsir{ycosd/ sin6; ), where

Y = (Zmax — Zmin)/2 andd = m— (Omin + Omax) /2 are de- 0.4

termined by the vertices of the parabolas, and the vgues . ‘

and@; (known from part 1). We obtaip = 0.34, which is ) 3 4 5 6 7
Close to the aCtUaI Valup: 03218 Angle a of 2nd rotation about d0+f(11) d1

Figure 4: Having determined the rotation frequen-

LT cies wéi)m and the angleﬁé?m and qoé?m of the
08k O y-comp.

rotation axedg + f,%k)dm for various values of the
controlsf; and f,, we convert the data into Carte-
sian coordinates, plot the values of they and z-
components of the axelg + fr(nk)dm form=1,2,re-
spectively, and fit straight lines. Tlyantercepts de-
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fy (arb. units) those ofd, for m= 1,2. For the data shown, we
i have
*  x-comp.
q e d$¥ = (0.19860.00480.0979"7
o d® = (0.98841.01630.0087)"
- dS = (0.0531,0.02460.98197

The distances$|/d®! — da%|| of 0.0054, 00218 and
o1 02 " os oz os 0.0613, respectively, compare favorably to the 3%
f (@rb. units) readout error rate of the simulated experiments.
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