424 research outputs found

    The Giant Dipole Resonance as a quantitative constraint on the symmetry energy

    Full text link
    The possible constraints on the poorly determined symmetry part of the effective nuclear Hamiltonians or effective energy functionals, i.e., the so-called symmetry energy S(rho), are very much under debate. In the present work, we show that the value of the symmetry energy associated with Skyrme functionals, at densities rho around 0.1 fm^{-3}, is strongly correlated with the value of the centroid of the Giant Dipole Resonance (GDR) in spherical nuclei. Consequently, the experimental value of the GDR in, e.g., 208Pb can be used as a constraint on the symmetry energy, leading to 23.3 MeV < S(rho=0.1 fm^{-3}) < 24.9 MeV.Comment: 5 pages, 2 figures, submitte

    The Compression-Mode Giant Resonances and Nuclear Incompressibility

    Get PDF
    The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.Comment: Review paper to appear in "Progress in Particle and Nuclear Physics

    Effects of phonon-phonon coupling on low-lying states in neutron-rich Sn isotopes

    Full text link
    Starting from an effective Skyrme interaction we present a method to take into account the coupling between one- and two-phonon terms in the wave functions of excited states. The approach is a development of a finite rank separable approximation for the quasiparticle RPA calculations proposed in our previous work. The influence of the phonon-phonon coupling on energies and transition probabilities for the low-lying quadrupole and octupole states in the neutron-rich Sn isotopes is studied.Comment: 18 page

    QRPA plus Phonon Coupling Model and the Photoabsorbtion Cross Section for 18,20,22^{18,20,22}O

    Get PDF
    We have calculated the electric dipole strength distributions in the unstable neutron rich oxygen isotopes 18,20,22^{18,20,22}O, in a model which include up to four quasi-particle-type configurations. The model is the extension, to include the effect of the pairing correlations, of a previous model very successful around closed shell nuclei, and it is based on the quasi-particle-phonon coupling. Low-lying dipole strength is found, which exhausts between 5 and 10% of the Thomas-Reiche-Kuhn (TRK) energy-weighted-sum-rule (EWSR) below 15 MeV excitation energy, in rather good agreement with recent experimental data. The role of the phonon coupling is shown to be crucial in order to obtain this result.Comment: 16 pages + 6 figure

    Nuclear single-particle states: dynamical shell model and energy density functional methods

    Get PDF
    We discuss different approaches to the problem of reproducing the observed features of nuclear single-particle (s.p.) spectra. In particular, we analyze the dominant energy peaks, and the single-particle strength fragmentation, using the example of neutron states in 208Pb. Our main emphasis is the interpretation of that fragmentation as due to particle-vibration coupling (PVC). We compare with recent Energy Density Functional (EDF) approaches, and try to present a critical perspective.Comment: 7 pages. Contribution to the "Focus issue on Open Problems in Nuclear Structure", Journal of Physics

    Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances

    Full text link
    The experimental and theoretical studies of Giant Resonances, or more generally of the nuclear collective vibrations, are a well established domain in which sophisticated techniques have been introduced and firm conclusions reached after an effort of several decades. From it, information on the nuclear equation of state can be extracted, albeit not far from usual nuclear densities. In this contribution, which complements other contributions appearing in the current volume, we survey some of the constraints that have been extracted recently concerning the parameters of the nuclear symmetry energy. Isovector modes, in which neutrons and protons are in opposite phase, are a natural source of information and we illustrate the values of symmetry energy around saturation deduced from isovector dipole and isovector quadrupole states. The isotopic dependence of the isoscalar monopole energy has also been suggested to provide a connection to the symmetry energy: relevant theoretical arguments and experimental results are thoroughly discussed. Finally, we consider the case of the charge-exchange spin-dipole excitations in which the sum rule associated with the total strength gives in principle access to the neutron skin and thus, indirectly, to the symmetry energy.Comment: Updated version, with small corrections based on comments/suggestions from the referee. 12 pages, 9 figures; submitted to EPJA "Special Issue on Symmetry Energy

    Skyrme functional with tensor terms from \textit{ab initio} calculations of neutron-proton drops

    Full text link
    A new Skyrme functional devised to account well for standard nuclear properties as well as for spin and spin-isospin properties is presented. The main novelty of this work relies on the introduction of tensor terms guided by \textit{ab initio} relativistic Brueckner-Hartree-Fock calculations of neutron-proton drops. The inclusion of tensor term does not decrease the accuracy in describing bulk properties of nuclei, experimental data of some selected spherical nuclei such as binding energies, charge radii, and spin-orbit splittings can be well fitted. The new functional is applied to the investigation of various collective excitations such as the Giant Monopole Resonance (GMR), the Isovector Giant Dipole Resonance (IVGDR), the Gamow-Teller Resonance (GTR), and the Spin-Dipole Resonance (SDR). The overall description with the new functional is satisfactory and the tensor terms are shown to be important particularly for the improvement of the Spin-Dipole Resonance results. Predictions for the neutron skin thickness based on the non-energy weighted sum rule of the Spin-Dipole Resonance are also given.Comment: 16 pages, 12 figure

    Response function beyond mean field of neutron-rich nuclei

    Get PDF
    The damping of single-particle and collective motion in exotic isotopes is a new topic and its study may shed light on basic problems of nuclear dynamics. For instance, it is known that nuclear structure calculations are not able, as a rule, to account completely for the empirical single-particle damping. In this contribution, we present calculations of the single-particle self-energy in the case of the neutron-rich light nucleus 28^{28}O, by taking proper care of the continuum, and we show that there are important differences with the case of nuclei along the valley of stability.Comment: 9 pages, 4 figures. To appear in: Proceedings of the Topical Conference on Giant Resonances, Varenna, May 11-16, 1997 (Nucl. Phys. A, to be published

    Constraints on the symmetry energy and on neutron skins from the pygmy resonances in 68Ni and 132Sn

    Get PDF
    Correlations between the behavior of the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the Pygmy Dipole Resonance (PDR) in 68Ni and 132Sn have been investigated by using different Random Phase Approximation (RPA) models for the dipole response, based on a representative set of Skyrme effective forces plus meson-exchange effective Lagrangians. A comparison with the experimental data has allowed us to constrain the value of the derivative of the symmetry energy at saturation. The neutron skin radius is deduced under this constraint.Comment: Accepted for publication in PRC Rapid Comminicatio

    Regularization of zero-range effective interactions in finite nuclei

    Full text link
    The problem of the divergences which arise in beyond mean-field calculations, when a zero-range effective interaction is employed, has not been much considered so far. Some of us have proposed, quite recently, a scheme to regularize a zero-range Skyrme-type force when it is employed to calculate the total energy, at second-order perturbation theory level, in uniform matter. Although this scheme looked promising, the extension for finite nuclei is not straightforward. We introduce such procedure in the current paper, by proposing a regularization procedure that is similar, in spirit, to the one employed to extract the so-called V_{\rm low-k} from the bare force. Although this has been suggested already by B.G. Carlsson and collaborators, the novelty of our work consists in setting on equal footing uniform matter and finite nuclei; in particular, we show how the interactions that have been regularized in uniform matter behave when they are used in a finite nucleus with the corresponding cutoff. We also address the problem of the validity of the perturbative approach in finite nuclei for the total energy.Comment: Accepted in Phys. Rev. C (https://journals.aps.org/prc/accepted/4207aPfaIc313f02133c78b61b9c320e0a4e115d5
    corecore