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1Physics Department, University of Notre Dame,

Notre Dame, IN 46556, USA
2Dipartimento di Fisica, Università degli Studi di Milano,
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Abstract

The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar
giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the
fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear
matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these
issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole
Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium
since when theory has been able to start giving reliable error bars to the incompressibility. However,
mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations
of finite nuclei.

The present review deals with the developments beyond all this. Experimental techniques have
been improved, and new open-shell, and deformed, nuclei have been investigated. The associated
changes in our understanding of the problem of the nuclear incompressibility are discussed. New
theoretical models, decay measurements, and the search for the evolution of compressional modes
in exotic nuclei are also discussed.

PACS: 24.30.Cz, 21.65.+f, 25.55.Ci

1 Introduction

Giant resonances (GRs) are the clearest manifestation of nuclear collective motion. The domain of GRs
is a mature field, in which the basic issues have been established quite some time ago. Monographs
exist that review the classification of these collective modes and illustrate the findings obtained up to
the turn of the century [1, 2]. We do not intend to restart from scratch but, in a way, this review paper
aims to be a supplement to the book by M. Harakeh and A. Van Der Woude [2]; consequently, the
results presented here have all been obtained after the years 2000-2001, with only a few exceptions.

There are essentially three new and interesting lines of research in the current physics of GRs:
use well-established experimental data as a benchmark for new theories; identify GRs in neutron-rich,
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eventually weakly-bound isotopes; and, search for elusive modes that have not been seen so far. These
issues are quite general, and will be touched upon in this review. However, our main concern in this
review is the compression-mode resonances. These are interesting for one specific reason, namely one
hopes to extract from them valuable information about the incompressibility of nuclear matter, K∞.
This quantity, as we shall discuss in detail below, is one of the key parameters of the nuclear Equation
of State (EoS). We strive to determine it for our general knowledge, and also for some applications
related to astrophysics. The mechanism of core-collapse supernova explosion is still under current
intensive study. Although the weak-interaction processes and the neutrino transport are the most
crucial ingredients for the understanding of the explosion and of the evolution towards the (proto-
)neutron star, the EoS is also an important input for the simulations.

Therefore, extending the study of compression modes to more systems than it has been done so
far (including open-shell, or deformed isotopes) is not done merely to complete some systematics but
rather with the goal to better understand how nuclear matter behaves when it is compressed. There is
an interplay here with the general issue of “elusive” modes, that we mentioned previously. The nucleus
is a complex system, and the question, in some cases, is first whether a mode is compression or not —
and after that, whether its properties shed some new light on the value of the incompressibility. While
the isoscalar giant monopole resonance (ISGMR) in several medium-heavy nuclei is definitely a well-
defined compressional mode, it gets more fragmented in lighter systems and/or in deformed systems
and associating it with a macroscopic compressional “single mode” becomes more problematic. As
we move to the isoscalar dipole case, the issue is to understand the nature of the low-lying strength.
Whether this strength has simple one-particle character or is hiding some new “mode” (like the elusive
toroidal mode), is still not completely clear and the answer may be different according to the region
of the isotope chart. In short, while in the past only the ISGMR in 208Pb has been used to extract
the value of the nuclear incompressibility, our present understanding needs to be checked against other
types of nuclei. This may bring to a broader view, or to a change in perspective, concerning the nuclear
incompressibility.

An ultimate goal is to further broaden our understanding by going towards exotic nuclei far from
the stability valley. There is obvious interest in being able to pinpoint how the incompressibility, or
the other quantities that characterise the nuclear EoS, change when the neutron-proton asymmetry
increases. Obviously, we may expect qualitative changes when nuclei become weakly bound, resulting
in a dilute form of nuclear matter, in keeping with the formation of a skin or a halo. In fact, if isotope
chains that are long enough can be investigated, one finds that when the neutron excess increases the
protons become more bound due to the strong neutron-proton interaction, while the neutrons occupy
higher levels that lie close to the continuum. A large difference between the Fermi energies of protons
and neutrons may produce a decoupling between the well-bound nucleons in the core and the less
bound neutrons in the skin or halo. These two components might behave like two fluids with different
incompressibilities. If this happens, by studying the compression modes in long chains extending far
from the stability valley, we can have access to the incompressibility of neutron matter at sub-saturation
density. This is also of paramount importance for the physics of the core-collapse supernova and the
neutron stars. The inner crust of neutron star is composed by matter at densities between 10−3ρ0 and
ρ0 where ρ0 is the ordinary saturation density. Hence, the importance of knowing the parameters of the
EoS below saturation.

In this paper, after some brief reminders about the definition of monopole and dipole operators
and strengths in Sec. 2, we discuss the experimental and theoretical tools for the study of compression
modes in Secs. 3 and 4, respectively. The experimental results obtained after the turn of the millennium
are reviewed in Sec. 5. Sec. 6 is devoted to the extraction of the nuclear incompressibility from the
compression modes with the help of theory. We will stress the differences that seem to emerge between
magic and open-shell nuclei, as far as the deduced value of the incompressibility is concerned. Secs. 7
and 8 are devoted to other possible effects (deformation and shell effects) that may play a role in making
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the systematic extraction of the incompressibility quite difficult. Then, Sec. 9 concerns the asymmetry
term of the nuclear incompressibility, while Sec. 10 reports on recent particle-decay measurements. The
main prespective for the future, i.e. compression modes in unstable nuclei, is the subject of Sec. 11.
Finally, our conclusions are presented in Sec. 12.

2 General definitions

Giant resonances are states in which most of the strength associated with a given external operator
acting on the nucleus is concentrated. The external operator F can be of various kinds, but in this
paper we shall focus on the isoscalar monopole operator,

FIS monopole =
∑
i

r2
i , (1)

and on the isoscalar dipole operator,

FIS dipole =
∑
i

r3
i Y1M (r̂i) , (2)

where i labels the i-th nucleon while r and r̂ are the radial coordinate and a shorthand notation for the
polar angles. The strength function, or simply strength, associated with an operator F is a function of
the excitation energy E that reads

S(E) =
∑
n

|〈n|F |0〉|2δ(E − En), (3)

where n labels a complete set of excited states of the nucleus, |n〉, having energy En with respect to the
ground state |0〉. The latter equation (3) is written in terms of discrete excited states for the sake of
simplicity, but above the particle threshold S(E) is actually a continuous function. The sum rules mk

are defined by

mk ≡
∫
dE EkS(E), (4)

and have the obvious meaning of being the moments of the strength function. Of special importance are
the non-energy weighted sum rule (NEWSR) that is simply the moment m0, and the energy-weighted
sum rule (EWSR) m1. The centroid of the strength function can be written as

Ē =
m1

m0

, (5)

and this quantity is often referred to in what follows. The inverse-energy weighted sum rule is also used
in the context of the constrained model (cf. Sec. 6.1 below).

We end this Section by providing the expected values of the EWSR for the modes under study. In
the case of the ISGMR one obtains

m1(ISGMR) =
2~2

m
A〈r2〉. (6)

The corresponding value of EWSR for the ISGDR reads

m1(ISGDR) =
~2A

8πm
11〈r4〉. (7)
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However, it is well known that part of the ISGDR sum rule is taken by the spurious center-of-mass
state that corresponds to the translation of the nucleus as a whole. An effective way to get rid of the
spurious state is to modify the operator (2) and write

F ′IS dipole =
∑
i

(
r3
i − ηri

)
Y1M (r̂i) , (8)

where η = 5
3
〈r2〉. Then, the EWSR becomes

m′1(ISGDR) =
~2A

8πm

(
11〈r4〉 − 5η〈r2〉

)
. (9)

If one starts from the small momentum limit of the dipole term in
∑

i e
i~q~ri , namely if one considers the

operator

F
(q)
IS dipole =

∑
i

j1 (qri)Y1M (r̂i) , (10)

and performs the limit q → 0, then the ISGDR sum rule becomes

m′′1(ISGDR) =
~2A

8πm

(
11〈r4〉 − 5η〈r2〉 − 10ε〈r2〉

)
, (11)

where

ε =

(
4

EISGQR

+
5

EISGMR

)
~2

3mA
(12)

under the assumption that the ISGMR strength, as well as the isoscalar quadrupole resonance (ISGQR)
one, are exhausted in a single peak1. The term proportional to ε in Eq. (11) can safely be neglected in
medium-heavy nuclei. In such a case, Eqs. (9) and (11) coincide.

In all the expressions for the ISGDR sum rule we have taken into account the excitation of only one
of the three M -components. In a spherical system the sum rule associated with the sum over M will
have an extra factor three [as we write below, cf. Eq. (20)].

3 Experimental and Data Analysis Techniques

Experimental determination of the ISGMR strength has been accomplished generally via inelastic scat-
tering of isoscalar particles — typically α particles or, in some cases, deuterons — at energies of 35-100
MeV/nucleon. The cross sections for excitation of ISGMR rise sharply over this energy range, and
rather slowly thereafter. Because of the highly absorptive nature of the α-nucleus and deuteron-nucleus
interactions, the scattering may be treated as off a “black disk”, with the cross sections, to the first
order, given by the squares of the corresponding Bessel functions, Jλ [4]:(

dσ

dΩ

)
0+→0+

∝ |J0(qRD)|2, (13)

(
dσ

dΩ

)
0+→1−

∝ |J1(qRD)|2, (14)

(
dσ

dΩ

)
0+→2+

∝
[

1

4
J0(qRD)2 +

3

4
J2(qRD)2

]
. (15)

1Note an extra factor 1/4 in Eq. (3) of Ref. [3], due to a factor 1/2 in front of the operator [Eq. (A6b) of the same
paper].
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Figure 1: DWBA calculations of angular distributions of differential cross sections for excitation
of isoscalar states of various multipoles (∆L=0–3) at an excitation energy of 15.5 MeV in inelastic
scattering of 386-MeV α particles off 110Cd. Each calculation corresponds to exhaustion of 100% of the
EWSR in a single state at that energy.

Here, q is the momentum transfer, and RD, the diffraction radius, is adjusted to fit the phase of the
elastic scattering angular distribution. This leads to rather distinctive angular distributions of the in-
elastic scattering cross sections for various multipoles. Fig. 1 shows distorted-wave Born approximation
(DWBA) calculations for angular distributions for inelastic scattering of 386 MeV α particles off 110Cd
for excitation of a state at an excitation energy of 15.5 MeV corresponding to angular momentum
transfers ∆L = 0–3.

A complication in this procedure arises because of the overlap between various giant resonances.
For example, the ISGMR (∆L = 0) overlaps significantly with the ISGQR (∆L = 2); and the ISGDR
(∆L = 1) with the so-called high-energy octupole resonance (ISHEOR, ∆L = 3). As is evident from
Fig. 1, the angular distributions corresponding to these overlapping ∆L values are clearly distinct
only at very forward angles (≤ 5◦). At higher beam energies, the angular distributions would be
further “compressed”, making the angular range for distinctive multipolar characteristics smaller, and
the measurements even more difficult to carry out successfully. Thus, one needs to measure inelastic
scattering at center-of-mass energies of 35-100 MeV/nucleon and at very small angles to clearly identify
the strengths corresponding to various multipoles. The practical requirements for such measurements,
therefore, are:

• An accelerator–typically, a cyclotron–capable of providing beams at energies of 35-100 MeV/nucleon.
At these energies, the cross sections for excitation of the ISGMR are sufficient to carry out the
measurements in a reasonable time. At lower beam energies, the cross sections are rather low; at
higher energies, the increase in cross sections is rather small and, as mentioned above, there are
practical difficulties with determination of multipolarities based on angular distributions. It is
also extremely important that the beam be free of any “halos” or “wings” at the target position;
indeed, the process of obtaining a “clean” beam requires the right equipment and expertise, and
can sometimes take a large fraction of the beam time typically allotted for such measurements.

• A high-quality magnetic spectrometer to allow for measurements at extremely forward angles,
including 0◦, since only at small angles is it possible to clearly distinguish the various multipoles
based on their distinct angular distributions. The 0◦ measurement is crucial because the ISGMR
cross section is maximal there (see Fig. 1). [An exception to this requirement occurs when using
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inverse-kinematics reactions (with radioactive ion beams, for example); those measurements are
discussed later.]

These requirements, in principle, are met at several laboratories around the world. However, almost all
recent measurements on the compression-mode giant resonances with stable beams have been carried
out at the Research Center for Nuclear Physics (RCNP), Osaka University, and at the Texas A & M
University Cyclotron Institute (TAMU) (with some decay measurements carried out at KVI, Groningen;
these, as also measurements at RCNP with deuterons, are discussed separately later in this article). In
the RCNP measurements, a 386-MeV α-particle beam is employed and inelastic scattering spectra are
measured using the magnetic spectrometer Grand Raiden [5] for detection of the scattered particles.
The TAMU group uses 240-MeV α beams and the MDM spectrometer [6]. The scattered particles are
momentum analyzed by the spectrometers and focused onto the focal-plane detector systems comprising
a combination of multi-wire drift chambers, proportional counters, ionization chambers, and scintillation
detectors, to allow for particle identification and determination of position (both x- and y- in case
of RCNP work) and the angle of incidence of the scattered particle via the ray-tracing technique;
typically, x-position resolutions of <1.0 mm and angular resolution of <0.15◦ have been achieved. The
0◦ measurements present an especial challenge because the beam itself also has to go through the
system. In the TAMU arrangement, the beam passes beside the detector and is stopped on a carbon
block inside a Faraday cup behind the detector [7], whereas in the RCNP system, it passes through a
hole in the detectors and is stopped in a Faraday cup (FC) placed several meters downstream from the
detectors [8]; Fig. 1 of Ref. [8], for example, shows the arrangement of the three Faraday cups utilized
in the RCNP measurements for different angular ranges. In both cases, inelastic scattering spectra are
measured typically over the angular range 0◦–10◦, with elastic scattering spectra also measured (over a
much wider angular range), in many cases, in order to obtain appropriate optical model parameters used
in the distorted-wave Born approximation (DWBA) calculations, as described hereinafter. Calibration
of the excitation energy spectra is carried out by measuring elastic and low-energy excitation peaks in
the nuclei 12C and 24Mg.

The inelastic scattering spectra for the medium-mass and heavier nuclei (A≥90) typically consist of
one or two broad giant resonance “bumps” on top of a “background” (see Fig. 2). This “background”
comprises excitation of nuclear continuum and contributions from three-body channels, such as knock-
out reactions [10]. At lower beam energies (< 40 MeV/nucleon), there are also the contributions
from the so-called “pick-up and decay” channels whereby the incoming α particle picks up a proton
or a neutron from the target, forming 5Li and 5He, respectively. These unstable nuclei decay almost
immediately, with the final α particle leading to a spurious “bump” in the inelastic scattering spectra,
not dissimilar to a giant resonance. This is purely a kinematical effect and the position of this “bump”
depends on the scattering angle and beam energy. Still, this effect may lead to claims of identification
of new resonances, one case being that of the ISHEOR in 208Pb using ∼20 MeV/nucleon 16O particles
[11]; later measurements, using a 14N beam at 19 MeV/nucleon, clearly established [12] that there was
no evidence for excitation of resonances purported to have been observed in Ref. [11].

The largest contributions to this “background” are, generally, instrumental, originating from rescat-
tering of elastically scattered particles from the opening slits and other parts of the spectrograph. This
problem is quite severe at small angles where the elastic scattering cross sections are very large. This
large overall “background” had been a bane of all giant resonance measurements for the longest time
because there is no direct way to calculate, or even estimate, its shape and magnitude. What one did
was to subtract out from the spectra a background of “reasonable” shape before further analysis. The
“reasonable shape” could be a matter of debate, of course, and the process always led to questions
about the correctness of the extracted results.

Of the two aforementioned laboratories from where most of the recent giant resonance measurements
have come, TAMU uses this background subtraction process still. After extensive investigations of the
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Figure 2: Excitation energy spectra for 208Pb from the TAMU (α, α’) work at the scattering angles
indicated. The thick solid lines show the continuum chosen for the analysis. The dashed line below 22
MeV represents a contaminant present at some angles in the spectra taken with the MDM spectrometer
at 0◦. Figure from Ref. [9].
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results of different background shapes, they now employ an empirical background assuming that it has
the shape of a straight line at high excitation, joining onto a Fermi shape at low excitation to model
particle threshold effects [9, 13]; examples of such empirical background are shown in Fig. 2.

The spectra in the RCNP measurements, on the other hand, are essentially free of all instrumental
background. The ion-optics of Grand Raiden enables particles scattered from the target position to be
focused vertically at the focal plane. On the other hand, background events due to the rescattering
of α particles from the wall and pole surfaces of the spectrometer show a flat distribution in the
vertical position spectra at the focal plane, as shown in Fig. 3 for 144Sm(α, α’) with the Grand Raiden
spectrometer set at 0◦. The vertical center (cross-hatched) region contains a combination of true (target-
scattered) events plus those from the background; the off-center (slant-hatched) regions have comprise
only the background.

Figure 3: Vertical position spectra from the RCNP 144Sm (α, α’) work, with the Grand Raiden spec-
trometer set at 0◦. The central, hatched region represents true+background events. The off-center,
slanted lined regions represent only background events. The true events were obtained by subtracting
background events from the true+background events; “True” stands for “target-scattered”. Figure from
Ref. [8].

Fig. 4 (a) shows the excitation-energy spectrum for 144Sm at 0◦ obtained from each region. The
background spectrum has no discernible structures in the giant resonance region. Clean “true” spectra
are obtained by subtracting the instrumental background spectrum from the true+background spec-
trum, as shown in Fig. 4 (b). This spectrum has, practically, no instrumental contributions to the
“background” which now comprises the true nuclear continuum and, at the highest excitation energies,
contributions from three-body channels, such as knock-out reactions, as mentioned earlier in the text.
Representative “background-subtracted” inelastic scattering spectra for several nuclei from RCNP work
are shown in Fig. 5. Incidentally, a similar procedure was used many years ago in giant resonance studies
at KVI, Groningen [10].

The backgound-subtracted spectra, so obtained, are used in a multipole-decomposition analysis
(MDA) [15, 16] to extract the multipole strength distributions. In the MDA process, the experimental
cross-sections at each angle are binned into small (typically, ≤1 MeV) excitation energy intervals.
The laboratory angular distributions for each excitation-energy bin are converted to the center-of-
mass frame using the standard Jacobian and relativistic kinematics. For each excitation energy bin,
the experimental angular distributions dσexp

dΩ
(θc.m., Ex) are fitted by means of the least-square method

with the linear combination of the calculated double-differential cross sections associated with different
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Figure 4: (a) Excitation-energy spectrum for 144Sm from the “0◦” RCNP (α, α’) work obtained by
gating on the central region of the vertical position in the focal plane. The hatched part corresponds
to the off-center parts in Fig. 3. (b) True excitation-energy spectrum after background subtraction.
Figure from Ref. [8].

multipoles:

d2σexp(θc.m., Ex)

dΩdE
=

7∑
L=0

aL(Ex)
d2σDWBA

L (θc.m., Ex)

dΩdE
, (16)

where aL(Ex) is the EWSR fraction for the Lth component, and
d2σDWBA

L

dΩdE
(θc.m., Ex) is the cross section

corresponding to 100% EWSR for the Lth multipole at excitation energy Ex, calculated using the
distorted-wave Born approximation (DWBA). The fractions of the EWSR, aL(Ex), for various multipole
components are determined by minimizing χ2. This procedure is justified since the angular distributions
are well characterized by the transferred angular momentum ∆L, according to the DWBA calculations
for α scattering. For the limited angular range covered in these measurements, summation over L ≤7
is more than sufficient to extract the desired strength distributions; indeed, it is not possible to reliably
extract the strength distributions for L ≥4 over this limited angular range. The uncertainties in the
aL(Ex) coefficients are estimated by changing the magnitude of the one component aL(Ex), until refitting
by varying the other components resulted in an increase in the χ2 by 1 [17, 8].

The computer codes PTOLEMY [18, 19] and ECIS95 [20] were used to perform the DWBA calcu-
lations, with the input values in PTOLEMY modified [21] to take into account the correct relativistic
kinematics. The shape of the real part of the potential and the form factor for PTOLEMY were ob-
tained using the codes SDOLFIN and DOLFIN [22]. The transition densities and sum rules for various
multipolarities employed in these calculations are obtained from Refs. [2, 23, 3] and the radial moments
obtained by numerical integration of the Fermi mass distribution using the parameters c and a from,
for example, Ref. [24].

Even though the α particle is isoscalar, the isovector giant dipole resonance (IVGDR) is excited at
these beam energies via Coulomb excitation. The cross sections for IVGDR excitation increase with in-
creasing beam energy and can be quite significant, especially for heavy target nuclei [25, 26]. Because its
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Figure 5: “Backgroud-subtracted” excitation energy spectra for 90Zr, 116Sn, 144Sm, and 208Pb from
the RCNP (α, α’) work at an averaged scattering angle of θavg = 0.64◦. The main “bump” consists,
primarily, of ISGMR and ISGQR; the secondary “bump” is ISGDR+ISHEOR. The arrows indicate the
location of the ISGDR as extracted in that work. Figure from Ref. [14]

energy is nearly identical to that of the ISGMR, the IVGDR contribution has to be properly accounted
for in the MDA. This is carried out [27, 16] by employing IVGDR parameters from previously-known
photonuclear cross-section data [28] in conjunction with DWBA calculations based on the Goldhaber-
Teller model to estimate the IVGDR differential cross sections as a function of scattering angle [23].

To perform the DWBA calculations, one requires appropriate optical model parameters (OMPs).
For this purpose, data are obtained for elastic scattering (and inelastic scattering to the low-lying
states) over a wide angular range (typically, 0◦–30◦) and the OMPs extracted from fits to the angular
distributions of differential cross sections of elastic scattering.

A “hybrid” optical-model potential (OMP) proposed by Satchler and Khoa [31] has been employed
in most of the RCNP and all TAMU measurements reported here. The real part of the optical potential
is generated by single-folding with a density dependent Gaussian α-nucleon interaction [16], and a
Woods-Saxon form is used for the imaginary term. Thus, the total α-nucleus ground-state potential is
given by:

U(r) = −V (r)− iW /{1 + exp[(r − RI )/aI ]}, (17)

where V (r) is the real single-folding potential obtained using computer code SDOLFIN [22] by folding
the ground-state density with the density-dependent α-nucleon interaction:

υDDG(r, r′, ρ) = −υ[1− βρ(r′)2/3]exp

(
−|r− r′|2

t2

)
. (18)

Here, υDDG(r, r′, ρ) is the density-dependent α-nucleon interaction, |r− r′| is the distance between
center-of-mass of the α-particle and a target nucleon, ρ(r′) is the ground-state density of the target

10



Figure 6: (a) Angular distribution of the ratios of the elastic α scattering cross sections to the Rutherford
cross sections for 124Sn at an α energy of 386 MeV. The solid line shows a fit from the optical model
form given in the text. (b) Differential cross sections for excitation of the 2+ state in 124Sn. The solid
line shows the calculated cross sections for the state using the OMPs obtained from the fits to the data
in (a) and the B(E2) values from Ref. [29]. Figure from Ref. [16].

nucleus at a position r′ of the target nucleon, β = 1.9 fm2, and t = 1.88 fm. In Eq. (17), W is the
depth of the Woods-Saxon type imaginary part of the potential, with the radius RI and diffuseness aI .

The imaginary potential parameters (W , RI , and aI), together with the depth of the real part,
V , are obtained by fitting the elastic-scattering cross sections. The appropriateness of the OMPs so
obtained is tested by calculating the cross sections for the low-lying 2+ and/or 3− states using these
parameters and the previously-known transition probabilities for these states [29, 32], and comparing
those with the experimental values. Fig. 6 shows the fit to the elastic α scattering data from 124Sn and
the comparison of the experimental and calculated differential cross sections for the first 2+ state in
124Sn as an illustrative example of this procedure. Note that there is no “fitting” involved in Fig. 6(b)
and the calculation is performed for the adopted value for the B(E2) from Ref. [29].

We note here that in some cases of RCNP work [33, 14, 34, 8], the single-folding model was used,
in the same form, for both the real and imaginary parts; the final strength distributions were not
appreciably different from those obtained with the aforementioned “hybrid” model, however. A similar
“non-hybrid” model was used also by the TAMU group in analysis of 6Li-scattering data [35, 36].

MDA fits for the energy bin at an excitation energy of 13.5 MeV in 204,206,208Pb are shown in Fig. 7
for 386-MeV inelastic scattering data from RCNP [30]; the contributions from the L = 0, 1, 2, and 3
multipoles are also shown.

The strength distributions for the various multipoles are obtained by multiplying the extracted
aL(Ex)’s by the strength corresponding to 100% EWSR at the given energy Ex [2, 23, 3]:

S0(Ex) =
2~2A < r2 >

mEx
a0(Ex), (19)

in the case of monopole [cf. Eq. (6)],

S1(Ex) =
3~2A

32πmEx
[11 < r4 > −25

3
< r2 >2 −10ε < r2 >]a1(Ex), (20)

11



Figure 7: (Color online) MDA fits to the experimental angular distributions for inelastic α scattering
data for 204,206,208Pb for a 1-MeV energy bin centered at Ex=13.5 MeV. The thin solid line through
the data shows the sum of various multipole components obtained from MDA. The dashed, dotted,
dot-dashed, and thick solid curves indicate contributions from L = 0, 1, 2 and 3, respectively. Figure
from Ref. [30].

in the case of IS dipole [cf. Eq. (11)2], and

SL≥2(Ex) =
~2A

8πmEx
L(2L+ 1)2 < r2L−2 > a2(Ex), (21)

in the case of the higher IS multipoles. Here, < rN > is the N th moment of the ground-state density,
while ε has been defined in Eq. (12) as ε=(4/EISGQR+5/EISGMR)~2/3mA. The centroid energies of the
ISGMR and the ISGQR are generally taken as 80 A−1/3 MeV and 64 A−1/3 MeV, respectively.

In the absence of data at a sufficient number of angles to perform a proper multipole decompo-
sition analysis, it is possible still to identify the position and width of the ISGMR and ISGDR from
a “difference of spectra” procedure, if data is available for angles at and near 0◦ (see, for example,
Ref. [10]). The premise behind this technique is simple: The angular distribution of the ISGMR is
maximal at 0◦ and declines sharply to a minimum (see Fig. 1, where this minimum is at about 2◦).
The angular distribution of the “competing” ISGQR, on the other hand, remains essentially flat over
this angular range. Indeed, this is mostly true for all other multipoles, as well as the “background”.
So, the “difference-spectrum”, obtained from subtracting the inelastic scattering spectrum at the first

2The extra factor 1/4 mentioned in the footnote of p. 4, is here included, as well as the factor 3 associated with the
sum over the three M -components (mentioned at the end of Sec. 2).
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Figure 8: (a) Expected L=0, L=2 strengths for 100% EWSR excitation in 386-MeV inelastic α
scattering off 90Zr at 0.7◦. The sum of the two strengths (basically, the inelastic scattering spectrum
at this angle) is also shown. (b) Same as (a) but for 2.1◦. Note that the ISGMR contribution is barely
discernible at this angle. (c) The “difference spectrum” obtained by subtracting the total (L=0 + L=2)
spectrum in (b) from that in (a). The total spectrum in (c) is essentially the ISGMR.
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Figure 9: (a) Inelastic α-scattering spectra for 208Pb for (0±2)◦. A two-peak + polynomial-background
fit to the data is shown superimposed with the peaks corresponding to the HEOR and the ISGDR
indicated. (b) The “difference spectrum”. A fit using peak parameters identical to those in (a) is also
shown; note that the fit corresponds to no HEOR strength. Figure from Ref. [37].

minimum of the expected ISGMR angular distribution from that at 0◦ (where the ISGMR strength is
maximal), essentially represents only the ISGMR strength. This is shown schematically in Fig. 8. The
same holds in comparing the angular distributions of the ISGDR and the ISHEOR and this technique
was used, for example, in the first clear identification of the ISGDR (see Fig. 9) [37]. Later in this
article, this technique will be referred to in discussing some aspects of ISGMR and ISGDR.

4 Theoretical models

4.1 RPA calculations: status

As recalled in the Introduction, GRs are collective modes and, because of their small-amplitude charac-
ter, they are good examples of harmonic motion. Consequently, linear response theory describes their
properties rather well in terms of coherent superpositions of 1 particle-1 hole (1p-1h) configurations.
In nuclear structure, self-consistent linear response theory is called Random Phase Approximation or
RPA. This theory is well described in textbooks [38, 39].

Although various phenomenological versions of RPA exist, only self-consistent RPA based on an
effective Hamiltonian H or an Energy Density Functional (EDF) is relevant to connect the ISGMR
energy to the nuclear incompressibility. Effective Hamiltonians, of the type Heff = T +Veff , can be used
to calculate the total energy on the most general Slater determinant |Φ〉, in the form

E[ρ] = 〈Φ|Heff |Φ〉. (22)

As our writing implies, the total energy turns out to be (only) a functional of the one-body density ρ.
If we introduce, just for the sake of clarifying the nomenclature, the energy density E , then

E[ρ] =

∫
d3r E(ρ). (23)
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Thus, we can also say that we have built a functional of the energy density, that can depend on the
particle density at the same point (local functional) or at different points (non-local functional): hence,
the name of EDF. Effective Hamiltonians can be seen as EDF generators or, alternatively, EDFs can
be written directly. In principle, one could write the most general EDF which is consistent with the
symmetries of the system and fit the associated free parameters on observables; in practice, one has to
choose an ansatz (that is, use either a nonrelativistic or a covariant form, and reduce the terms consistent
with symmetries to a number that is numerically tractable) and a set of observables. The systematic
and statistical errors associated with these choices are subject of great interest at present [40]; while
the community is aiming at finding a universal EDF, there is not a clearly systematic procedure that
leads to it. On these subjects, the literature is huge but the reader can start from the review paper
[41]. For the following discussions, the main classes of EDFs, that are Skyrme, Gogny and relativistic
functionals, will be relevant (and in particular RPA built with them). The issue of the pairing part of
an EDF will be also touched.
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Figure 10: RPA calculations of the monopole strength in 208Pb, performed by using the nonrelativistic
Skyrme-type functional SAMi [42], the Gogny-type functional DM1 [43], and the relativistic functional
DDME2 [44]. The vertical lines show the peak energy obtained in the experiments performed at TAMU
(13.9 MeV) and RCNP (13.7 MeV).

Spherical RPA is now a standard tool. The nonrelativistic Skyrme-RPA implementation on a basis
has been published and is available in Ref. [45]; codes exist, and have been largely exploited, in the
case of Gogny and relativistic functionals as well. An illustrative example of the monopole response in
208Pb is shown in Fig. 10. Standard codes, either using Skyrme, Gogny or relativistic functionals, do
implement full self-consistency at present. In Ref. [46], the effect of lacking such full self-consistency
has been carefully checked. It has been seen that dropping the two-body spin-orbit and Coulomb
residual interaction in RPA can produce a shift of the ISGMR energy by 100-700 keV (even larger in
few cases). As we dicuss below, this amounts to an error of up to 10% in the extraction of the nuclear
incompressibility. Similar effects have been found in the case of the Gogny force by the authors of Ref.
[47] who have, however, considered the case of electromagnetic excitations and not the ISGMR.

In the case of exotic nuclei, in which nucleons occupy more and more weakly bound levels, a proper
treatment of the continuum is appropriate. More precisely, this is mandatory for low-lying states,
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and could be less crucial for high-lying GRs. For Skyrme forces, continuum-RPA in the cooordinate
space can be exactly formulated but the practical implementations are much less than the discrete
implementations [48] and they lack full self-consistency. By using Gogny forces, it has been seen [49]
that, for the case of medium-light neutron-rich nuclei like 24O or 52Ca, the continuum and discrete RPA
results for high-lying GRs differ by 200-700 keV. The comparison of discrete and continuum RPA in
the case of relativistic functionals has been carried out in Ref. [50] and the results are not too much
different than those in the case of Gogny. A stable nucleus, 40Ca, has been analysed and the difference
between the ISGMR energies calculated either with continuum or discrete RPA is around 200 keV.

Open shell nuclei require the extension of RPA to Quasiparticle RPA (QRPA). Fully self-consistent
QRPA calculations have been published for spherical nuclei using different kinds of functionals [51,
52, 53, 54] and, to a lesser extent, also for axially deformed nuclei [55, 56, 57, 58]. In QRPA, one
sees the effect of pairing correlations, which are usually very strong for low-lying states and weak for
GRs, in keeping with the fact that pairing is restricted to a narrow window around the Fermi energy.
Weak pairing effects can nevertheless be of interest for the precision physics of GRs; in the case of
the ISGMR, for instance, one expects that even shifts of the resonance peak of few hundreds of keV
can impact the extraction of the nuclear incompressibility, as we have already mentioned. In QRPA
on top of Hartree-Fock-Bogoliubov (HFB) calculations for the ground-state, there are two effects that
show up: (1) The p-h excitations are replaced by two-quasiparticle excitations that are as a rule larger;
however, this effect is of the order of ≈ 2∆ (where ∆ is the ground-state pairing gap) close to the
Fermi energy but tends to become negligible when goes far from it; and, (2) The residual interactions
is supplemented by a pairing contribution which is attractive in the 0+ channel. For this reason, it has
been found that pairing tends to lower the ISGMR energies in the Sn isotopes [59]. More systematic
inverstigations [60, 61], and their impact on our understanding of the nuclear incompressibility, will be
discussed below.

In axially deformed nuclei, one expects a splitting of the ISGMR peak. This fact is related to
the coupling with the ISGQR. We can understand this in simple terms, if we consider that only the
projection K of the total angular momentum J on the symmetry axis is a good quantum number in
the case of axially symmetric nuclei. Therefore, in such nuclei the monopole is coupled with the K = 0
component of the ISGQR and this mechanism produces a double peak. In this respect, the splitting is
not simply a function of the deformation parameter β2 as in the case of the IVGDR, but the coupling
matrix elements play a role as well. This mechanism has been studied in the past by using simple
models and assumptions. In Ref. [62] it has been estimated, based on the cranking model together with
the harmonic and scaling approximations for the vibrational modes, that for a well deformed nucleus
with β2 = 0.3 the splitting would be of the order of ≈ 30 A−1/3 MeV and, therefore, observable in
medium-heavy nuclei where the width should be smaller. We will discuss below to which extent these
expectations are fulfilled by measurements and microscopic calculations.

Before ending this section, a word should be said about time-dependent HF calculations (TDHF)
of the ISGMR. In principle, RPA is the small-amplitude limit of TDHF. Therefore, TDHF would be
the appropriate tool to see, at least theoretically, if there is evidence of large amplitude fluctuations in
the monopole case in some cases. Another advantage of TDHF is that it can be formulated using exact
continuum. A longstanding drawback has always been the fact that in TDHF calculations performed
in a finite box, it is not straightforward to avoid the reflection of the time-dependent wave function
at the box boundary, which causes a non-physical distortion of the evolution of emitted wave function
components. The most recent attempt to build a continuum TDHF is reported in Ref. [63].

4.2 Calculations beyond RPA (2p-2h, particle-vibration coupling)

RPA calculations take into account the fact that nuclei may not display a single monopole peak, that is,
they include the so-called Landau damping or fragmentation of the strength coupled to the underlying
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Figure 11: Calculation of the ISGMR strength function in 208Pb performed with the Skyrme interaction
SAMi [64]. The bars correspond to the RPA result while the blue (red) lines correspond to PVC
calculations with (without) subtraction. See the text for a discussion.

1p-1h states. They also include the escape width Γ↑, which is associated with particle decay into
the continuum; the latter is important in light nuclei but not in heavier ones. The major source of
broadening for the giant resonance strength is the coupling with more complex states than the simple
1p-1h (like 2p-2h, 3p-3h ... etc.) that gives rise to the so-called spreading width Γ↓.

Including 2p-2h coupling amounts to solving the so-called second RPA (SRPA) equation. This frame-
work was estabilshed long ago, and one can find many details, as well as calculations for the monopole
strength that employ a phenomenological Woods-Saxon mean-field plus Landau-Migdal residual forces,
in Ref. [65]. SRPA calculations for the ISGMR can be also found in Ref. [66]. In all these cases, approx-
imations with respect to the exact SRPA framework have been necessary for computational reasons;
the most relevant one is the so-called “diagonal” approximation, that is, 2p-2h configurations interact
with the 1p-1h ones but their mutual interaction is neglected. Fully self-consistent SRPA calculations
without the diagonal approximation are extremely demanding from the computational point of view,
and this explains why they have become available only after a significant temporal gap. The most
recent SRPA implementation of this type, with Skyrme, has been reported in [67] (see also Ref. [68]).

An analogous and yet different approach is the one based on the particle-vibration coupling (PVC)
idea. The RPA 1p-1h states are coupled at lowest order with low-lying collective vibrations. This
approach has been pioneered by the Copenhagen [69] and Dubna [70] schools. As in the case of SRPA,
one can find works based on the use of Woods-Saxon mean-field plus Landau-Migdal residual forces
[71, 72]. Skyrme calculations have been performed for the first time in Ref. [73]. Approximations that
were mandatory at that time, have been removed in Ref. [64]: these are the most recent self-consistent
RPA plus PVC calculations of the ISGMR, together with the very similar ones reported in Ref. [74].
Extensions to the case with pairing, namely to QRPA plus PVC, are also available in Ref. [75].

All these calculations are quite successful in reproducing most of the spreading width of the ISGMR,
especially in heavy nuclei. An example for the case of 208Pb can be seen in Fig. 11. Nevertheless, the
precise assessment of the convergence of these calculations with respect to the phonon (i.e. vibration)
model space is still a matter of discussion [76]. Another issue is their relevance in connection with the
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extraction of K∞. It has been suggested in Ref. [77] that the so-called “subtraction method” should
be a way to implement the RPA plus PVC and obtain the spreading of the giant resonance strength
without an artificial downward shift of the centroid. This optimistic view has been partly questioned
in [64]. In the case of the ISGMR, due to cancellations between the different diagrams that contribute
to the shift, this turns out to be not too large. This can be seen in Fig. 11.

Thus, we may have a tentative, positive answer but not a firm, conclusive one to two basic questions:
The first one is whether the subtraction method or some other method allows to use at the level of RPA
plus PVC the same interaction that has been used at the level of RPA. The second and related question
is in which way the calculations reported in this subsection, that are undeniably superior to RPA in
keeping with the reproduction of the spreading of the experimental strength function, are relevant to
the extraction of K∞. The ideal situation would be the one in which the PVC corrections produce a
realistic width, without moving down the centroid with respect to RPA, so that the centroid energy
can still be correlated with K∞. This situation is realised quite well in the case shown in Fig. 11 and
discussed in more detailed in Ref. [64]. The centroid energy is 13.7 MeV in RPA and the same within
PVC with subtraction, while it moves slightly down to 13.4 MeV without subtraction. It has to be
clarified whether this is general enough to be assumed as a guideline for the future.

4.3 Ab initio calculations for light nuclei

We should remind the reader about the present status of nuclear structure theory. There are several
attempts to derive properties of finite nuclei starting, as is said, ab initio. This wording has been
recently the subject of some debate. If we mean by this a genuine derivation of nuclear properties from
QCD, two paths are currently pursued. One strategy consists in extracting the properties of nuclear
uniform matter (mainly the saturation properties and the equation of state) and the properties of few-
body systems from lattice calculations with explicit quark degrees of freedom. This approach is still
striving to reproduce basic properties like binding energies: nuclear matter is still underbound, as well
as the 4He system which displays a binding energy of about 5 MeV [78]. Progress in the predictive
power of this approach is expected in the coming years. Another strategy is based on the use of an
effective realization of the QCD Lagrangian, using ideas about chiral symmetry that were originally
proposed by S. Weinberg. Thus, chiral effective field theories (EFT) model nuclei in terms of nucleons
and not of quarks; nonetheless, their dynamics is governed by a Lagrangian that is constrained by the
symmetries of QCD and its low-energy behavior, namely one including explicit pionic exchanges; in
this case, the most advanced implementations of nucleonic lattice simulations lead to good results for
the ground-state properties of N = Z light nuclei. In principle, these lattice simulations could be used
to look at the radial monopole excitations of those light nuclei; in practice, only the Hoyle state of 12C
has been addressed.

Before the advent of these approaches, the name ab initio had been used for several decades to mean
increasingly sophisticated many-body approaches based on point-like nucleons and bare two-body and
three-body potentials acting them: these can be either phenomenological potentials or meson-exchange
ones. Among the many-body approaches, we should mention variational methods, Green’s function
techniques, the Coupled Clusters method, and in-medium Renormalization Group approaches. For
quite a long time, the progress along these lines had been slow but recently it has speeded up so that
one can start discussing if and how collective states can be attacked by ab initio approaches.

In Ref. [79] it has been shown that, within an accurate ab initio framework, different Hamiltonians
including two- and three-body interactions provide very different results for the transition form factor to
the 0+ resonance, while they provide essentially the same in the case of the elastic form factor. It should
be stressed that the results for the transition form factor do also all disagree with the experimental
findings from (e, e′) scattering. The resonance under study lies at -8.20 ± 0.05 MeV, and has a width
of 270 ± 50 keV. The obvious question is whether such a state bears any resemblance with the ISGMR
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in medium-heavy nuclei. In Ref. [80], three criteria have been proposed to support this resemblance
(the peak dominance, the EWSR exhaustion, and the form of the transition density) and deemed to
have been satisfied. However, the α particle is a very light object and it turns out to be impossible to
relate its incompressibility to that of nuclear matter.

4.4 Cluster models

Especially in light nuclei, some cluster structures are likely to show up as an effect of the low density.
Some authors have argued that in these nuclei monopole or isoscalar dipole states may arise, which
are made up not by the collective vibration of nucleons but by collective vibrations of nuclear clusters
with respect to each other. One candidate is 24Mg, where it has been suggested that some peaks of
the ISGMR strength are due either to 20Ne + α, or to 12C + 12C vibrations, or even to a more exotic
vibration of a pentagon of α clusters (with an additional α lying in the center) [81]. Similar predictions
have been made for some of the peaks appearing the ISGDR strength of 20Ne and 44Ti [82] (see also
[83, 84]).

If one assumes a cluster configuration, the IS monopole or dipole transitions from the ground state
can be estimated analytically within a geometrical model based on the masses and the radii of the clus-
ters. These values of the transition strengths can be confronted with the single-particle estimates (W.u.)
and they may be comparable. However, this is simply a very rough indication that cluster vibrations
might be excited. The predictions in the references discussed in the previous paragraph have been made
by using the Antisymmetrized Molecular Dynamics (AMD) model. This is a variational model in which
the total wave function is taken as a product of Gaussian wave packets, with global antisymmetrization
as the fermionic nature of the particles requires. The molecular dynamics simulations can be carried
out once an effetive interaction is plugged in. In the cases at hand, some parameterization of the Gogny
interaction is employed.

While these works present some interest, it should be said that we still lack any experimental
evidence (like α-decay data) that can support the speculations of monopole and dipole states as cluster
vibrations.

5 Experimental Results

5.1 The ISGMR

Experimental strength distributions for ISGMR, based on multipole decomposition analyses, have now
been obtained for several nuclei over the range A=24–208. The results from the RCNP work, from
small-angle inelastic scattering of 400-MeV α-particles are presented in Fig. 12. In practically all
cases, the ISGMR appears as a single peak exhausting within it nearly 100% EWSR for L=0. (In
deformed nuclei, the ISGMR strength distribution has a two-peak structure, as already mentioned.)
The associated peak parameters, as well as the various commonly-used moment ratios of the strength
distributions, where available, are presented in Table 1. The table is comprehensive in that it contains
not only the results from RCNP work with α particles, but also their work with the deuteron probe,
and the TAMU work with α particles and 6Li ions.

A comment about the small, near-constant ISGMR strength at higher excitation energies observed
in most of the RCNP work is in order. [A similar effect is observed in the ISGDR strength distributions
as well (see below).] This strength is spurious and, in some ways, points to a limitation of the multipole
decomposition analysis. While the correct raison d’être of this extra strength is not quite well under-
stood, this may be attributed, quite reasonably, to contributions to the continuum from three-body
channels, such as knockout reactions and quasi-free processes [10, 88]. In the MDA procedure, the
continuum underlying the giant resonances is assumed to be composed of contributions from higher
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Figure 12: ISGMR strength distributions for various nuclei, extracted in the RCNP work. The data
are from Refs. [85, 8, 86, 16, 27, 87, 88, 89, 90, 91, 92].

multipoles (hence the inclusion of multipoles up to L=7, typically, in the MDA). The aforementioned
three-body processes, which also are forward-peaked in terms of angular distributions, are implicitly
included in the MDA as background and may mimic the L=0 (and L=1) angular distributions, leading
to such spurious multipole strengths at higher energies where the associated cross sections are very
small. This conjecture is supported by measurements of proton decay from the ISGDR at backward
angles wherein no such spurious strength is observed in spectra in coincidence with the decay pro-
tons [93, 94, 95, 96]; quasifree knockout results in protons that are forward peaked. This problem does
not exist in the A & M work because, as mentioned previously, they subtract all “background” from
their spectra before carrying out MDA. However, a similar increase in the ISGMR strength at high
excitation energies was reported as well in their results in 12C when they carried out MDA without first
subtracting the continuum from the excitation-energy spectra [97].
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Table 1: Parameters of the ISGMR peaks and moment ratios of the ISGMR strength distributions in
stable nuclei as reported by the TAMU and RCNP groups. The probes employed in the measurements
are listed for each case. Entries marked with ? indicate that the Γ is an RMS width, not that of a fitted
peak. Entries marked with † indicate a multimodal strength distribution; in those cases the parameters
for only the “main” ISGMR peak are included. For the TAMU data, the peak parameters correspond
to a Gaussian fit, whereas for the RCNP data, the corresponding parameters are for a Lorentzian fit.

Target Probe E0 (MeV) Γ (MeV) EWSR % m1/m0 (MeV)
√
m1/m−1 (MeV)

√
m3/m1 (MeV) Ref.

16O 240 MeV-α - 8.76± 1.82 48± 10 21.13± 0.14 19.63± 0.38 24.89± 0.59 [98]?
24Mg 240 MeV-6Li - 4.98+0.68

−0.32 106+34
−24 21.35+0.37

−0.26 - - [35]?

240 MeV-α - 6.5+0.6
−0.3 73± 8 21.3± 0.4 - 24.0+0.7

−0.3 [99]?
28Si 240 MeV-6Li - 5.78+1.34

−0.34 80+35
−20 20.59+0.78

−0.33 - - [35]?

240 MeV-α - 5.9± 0.6 76± 7 20.89± 0.38 - - [100]?
32S 386 MeV-α - 9.43 108+7

−8 23.65+0.60
−0.66 - - [89]?

40Ca 240 MeV-α - 4.88± 0.57 97± 11 19.18± 0.37 18.3± 0.3 20.6± 0.4 [101]?
48Ca 240 MeV-α - 6.68+0.31

−0.36 95+11
−15 19.88+0.14

−0.18 19.04+0.11
−0.14 22.64+0.27

−0.33 [102]?
46Ti 240 MeV-α 18.44± 0.25 9.23± 0.10 62± 11 17.66+0.65

−0.25 18.10+0.50
−0.20 20.47+1.41

−0.49 [103]
48Ti 240 MeV-α 18.73± 0.23 8.28± 0.05 84± 11 18.80+0.45

−0.18 18.33+0.36
−0.15 20.25+0.99

−0.28 [103]
56Fe 240 MeV-α 18.14+0.14

−0.15 7.40± 0.13 82+10
−8 18.35+0.33

−0.19 17.92+0.26
−0.15 19.57+0.73

−0.16 [104]
58Ni 240 MeV-α 18.43± 0.15 7.41± 0.13 82+11

−9 19.20+0.44
−0.19 18.70+0.34

−0.17 20.81+0.90
−0.28 [104]

386 MeV-α 19.9+0.7
−0.8 - 92+4

−3 - - - [88]
60Ni 240 MeV-α 17.62± 0.15 7.55± 0.13 67+12

−9 18.04+0.35
−0.23 17.55+0.27

−0.17 19.54+0.78
−0.23 [104]

90Zr 240 MeV-α 17.1 4.4 84 17.88+0.13
−0.11 17.58+0.06

−0.04 18.86+0.23
−0.14 [105]†

386 MeV-α 16.6± 0.1 4.9± 0.2 101± 3 - - - [14]
386 MeV-α 16.55± 0.08 4.2± 0.3 95± 6 18.13± 0.09 17.66± 0.07 19.68± 0.13 [87]

92Zr 240 MeV-α 16.6 4.4 62 18.23+0.15
−0.13 17.71+0.09

−0.07 20.09+0.31
−0.22 [105]†

386 MeV-α 16.12± 0.04 4.5± 0.2 97± 3 18.05± 0.05 17.52± 0.04 19.77± 0.06 [87]
94Zr 240 MeV-α 15.8 5.9 83 16.16+0.12

−0.11 15.75+0.27
−0.15 17.52+0.18

−0.14 [105]†
92Mo 240 MeV-α 16.8 4.0 42 19.62+0.29

−0.19 - 21.68+0.53
−0.33 [106]†

386 MeV-α 16.79± 0.11 4.2± 0.4 84± 6 18.20± 0.13 17.76± 0.11 19.64± 0.21 [87]
94Mo 240 MeV-α - 5.68+5.53

−1.93 112+19
−12 17.57+1.14

−0.3 17.06+0.75
−0.19 19.62+3.54

−1.15 [107]?
96Mo 240 MeV-α 16.4 5.7 83 16.95+0.12

−0.10 - 18.18+0.20
−0.13 [107]†

98Mo 240 MeV-α 15.7 6.5 89 16.01+0.19
−0.13 - 17.29+0.46

−0.21 [107]†
100Mo 240 MeV-α 15.8 7.1 97 16.13+0.11

−0.10 - 17.35+0.16
−0.12 [107]†

106Cd 386 MeV-α 16.50± 0.19 6.14± 0.37 - 16.27± 0.09 16.06± 0.05 16.83± 0.09 [27]
110Cd 240 MeV-α 15.71± 0.11 5.18+0.16

−0.17 86± 10 15.12+0.30
−0.11 14.96+0.13

−0.12 15.58+0.40
−0.09 [108]

386 MeV-α 16.09± 0.15 5.72± 0.45 - 15.94± 0.07 15.72± 0.05 16.53± 0.08 [27]
112Cd 386 MeV-α 15.72± 0.10 5.85± 0.18 - 15.80± 0.05 15.59± 0.05 16.38± 0.06 [27]
114Cd 386 MeV-α 15.59± 0.20 6.41± 0.64 - 15.37± 0.08 15.37± 0.08 16.27± 0.09 [27]
116Cd 240 MeV-α 15.17+0.12

−0.11 5.40+0.16
−0.14 100± 11 14.50+0.32

−0.16 14.31+0.20
−0.17 15.02+0.37

−0.12 [108]
386 MeV-α 15.43± 0.12 6.51± 0.40 - 15.44± 0.06 15.19± 0.06 16.14± 0.07 [27]

112Sn 240 MeV-α 15.67± 0.11 5.18+0.40
−0.04 110+15

−12 15.43+0.11
−0.10 15.23+0.26

−0.14 16.05+0.26
−0.14 [109]

386 MeV-α 16.1± 0.1 4.0± 0.4 92± 4 16.2± 0.1 16.1± 0.1 16.7± 0.2 [16]
114Sn 386 MeV-α 15.9± 0.1 4.1± 0.4 104± 6 16.1± 0.1 15.9± 0.1 16.5± 0.2 [16]
116Sn 196 MeV-d 15.7± 0.1 4.6± 0.7 73± 15 - - - [110]

240 MeV-6Li 15.58± 0.18 5.46± 0.18 106+27
−11 15.39+0.35

−0.20 - - [36]
240 MeV-α - 5.27± 0.25 112± 15 15.85± 0.25 - - [9]?

240 MeV-α 15.77± 0.07 - - − - - [111]
386 MeV-α 15.4± 0.1 5.5± 0.3 95± 4 - - - [14]
386 MeV-α 15.8± 0.1 4.1± 0.3 99± 5 15.8± 0.1 15.7± 0.1 16.3± 0.2 [16]

118Sn 386 MeV-α 15.6± 0.1 4.3± 0.4 95± 5 15.8± 0.1 15.6± 0.1 16.3± 0.1 [16]
120Sn 386 MeV-α 15.4± 0.2 4.9± 0.5 108± 7 15.7± 0.1 15.5± 0.1 16.2± 0.2 [16]
112Sn 386 MeV-α 15.0± 0.2 4.4± 0.4 106± 5 15.4± 0.1 15.2± 0.1 15.9± 0.2 [16]
124Sn 240 MeV-α 15.34± 0.13 5.00+0.03

−0.53 106+20
−10 14.50± 0.14 14.33+0.17

−0.14 14.96+0.10
−0.11 [109]

386 MeV-α 14.8± 0.2 4.5± 0.5 105± 6 15.3± 0.1 15.1± 0.1 15.8± 0.1 [16]
144Sm 240 MeV-α - 3.40± 0.2 92± 12 15.40± 0.30 - - [9]

240 MeV-α 15.16± 0.11 - - − - - [111]
386 MeV-α 15.30+0.11

−0.12 3.71+0.12
−0.63 84+4

−25 - - - [8]
148Sm 386 MeV-α 12.32± 0.45 4.7 17+3

−4 - - - [8]
15.37+0.14

−0.18 3.7 64+5
−24 - - - [8]

150Sm 386 MeV-α 12.5+1.7
−1.5 4.7 19± 11 - - - [8]

15.48± 0.28 3.7 63+13
−28 - - - [8]

152Sm 386 MeV-α 11.27+0.32
−0.54 4.7 17+2

−4 - - - [8]
15.44+0.12

−0.23 3.7 73+4
−25 - - - [8]

154Sm 386 MeV-α 10.83+0.32
−0.54 4.7 17+2

−3 - - - [8]
15.45+0.13

−0.16 3.7 71+4
−23 - - - [8]

204Pb 386 MeV-α 13.8± 0.1 3.3± 0.2 - - 13.7± 0.1 - [85]
206Pb 386 MeV-α 13.8± 0.1 2.8± 0.2 - - 13.6± 0.1 - [85]
208Pb 196 MeV-d 13.6± 0.1 3.1± 0.4 147± 18 - - - [110]

240 MeV-α - 2.88± 0.2 99± 5 13.96± 0.20 - - [9]
240 MeV-α 13.91± 0.11 - - − - - [111]
386 MeV-α 13.4± 0.2 4.0± 0.4 104± 9 - - - [14]
386 MeV-α 13.7± 0.1 3.3± 0.2 - - 13.5± 0.1 - [85]
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Figure 13: ISGDR strength distributions for various nuclei, extracted in the RCNP work. The data are
from Refs. [85, 8, 86, 16, 27, 87, 88, 89, 90, 91, 92].

5.2 The ISGDR

Experimental ISGDR strength distributions extracted in the RCNP work are presented in Fig 13. The
properties of the ISGDR peaks, in nuclei where a distinct peak structure is observed, are summarized
in Table 2. This table is also comprehensive in that it includes all available results from both RCNP
and TAMU.

Two points need to be made in this connection: i) No “peak” structure is observed for ISGDR
in the light nuclei, and generally one sees a monotonously increasing ISGDR strength at excitation
energies above 20 MeV. This is believed to be because of the aforementioned “spurious strength
distributions” observed also for the ISGMR; this effect is further exacerbated by the fact that the peak
energy of the ISGDR itself is rather high (>25 MeV) in the light nuclei. ii) In all heavy nuclei (A≥58),
the ISGDR strength distribution has two distinct peaks. This “low-energy” isoscalar L=1 strength
(LE) has engendered considerable interest and argument, as it was hinted in our Introduction. It is
present in nearly all of the recent theoretical calculations in some form or the other, and at similar
energies, although with varying strength. It has been shown [113, 114, 115, 116] that the centroid
of this component of the L=1 strength is independent of the nuclear incompressibility (and, hence,
is certainly of “non-bulk” nature). While the exact nature of this component is not fully understood
yet, suggestions have been made that this component might represent the “toroidal” [114, 117] or the
“vortex” modes [118, 119]. It is impossible to distinguish between the competing possibilities based on
currently-available data [93]; also, it is not at all clear why these exotic modes would be excited with
such large cross sections in (α, α′) work. There is general agreement, however, that only the high-energy
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Table 2: Parameters of the two-peak fits (LE component and HE component) to the ISGDR strength
distributions in stable nuclei as reported by the TAMU and RCNP groups. The probes employed in the
measurements are listed for each case. Entries marked with ? indicate that the Γ is an RMS width, not
that of a fitted peak. For the TAMU data, the peak parameters correspond to a Gaussian fit, whereas
for the RCNP data, the corresponding parameters are for a Lorentzian fit.

LE Component HE Component
Target Probe E0 (MeV) Γ (MeV) EWSR % E0 (MeV) Γ (MeV) EWSR % Ref.

46Ti 240 MeV-α 15.94± 0.31 6.34+0.63
−0.50 10± 4 28.30± 0.68 14.35+0.65

−0.79 67± 10 [103]
48Ti 240 MeV-α 15.75+0.31

−0.28 7.27+0.22
−0.24 13± 5 28.82+0.78

−0.72 12.44+0.56
−0.68 43± 9 [103]

48Ca 240 MeV-α 16.69+0.19
−0.13 6.24+1.49

−0.11 20+12
−8 37.28+0.71

−1.98 14.95+3.49
−0.11 160+90

−50 [102]
56Fe 240 MeV-α 17.41± 0.20 4.03+0.28

−0.26 5± 2 30.61± 0.29 20.31+0.39
−0.40 67± 10 [104]

58Ni 240 MeV-α 17.42± 0.25 3.94+0.36
−0.34 4± 2 34.06± 0.30 19.52+0.41

−0.40 86± 12 [104]
386 MeV-α ∼16 - - 30.8+1.7

−1.1 − − [88]
60Ni 240 MeV-α 16.01± 0.20 4.41+0.34

−0.22 6± 3 36.11+0.29
−0.27 27.13+0.43

−0.42 120± 16 [104]
90Zr 240 MeV-α 17.5± 0.2 5.4± 0.7 9.2± 2.1 27.4± 0.5 10.1± 2.0 49± 6 [105]

386 MeV-α 17.8± 0.5 3.7± 1.2 7.9± 2.9 26.9± 0.7 12.0± 1.5 67± 8 [14]
92Zr 240 MeV-α 14.7± 0.3 5.4± 0.7 5.8± 1.2 30.0± 0.7 12.9± 2.0 51± 7 [105]
94Zr 240 MeV-α 15.7± 0.2 9.0± 1.0 28± 4 27.0± 0.5 9.9± 2.0 64± 7 [105]

92Mo 240 MeV-α 17.5± 0.4 5.4± 0.7 5.8± 1.1 27.6± 0.5 10.2± 2.0 59± 7 [106]
94Mo 240 MeV-α 15.07+0.22

−0.19 3.19+0.36
−0.22 12± 2 26.50+0.44

−0.42 5.99+0.45
−0.49 45± 5 [107]

96Mo 240 MeV-α 15.9± 0.3 10.1± 1.1 17± 2 30.0± 0.7 13.1± 2.9 62± 8 [106]
98Mo 240 MeV-α 16.0± 0.3 10.9± 1.1 26± 3 27.4± 0.7 10.8± 3.0 49± 8 [106]
100Mo 240 MeV-α 13.0± 0.3 11.6± 1.2 18± 3 30.1± 0.7 12.5± 3.5 47± 10 [106]
106Cd 386 MeV-α 14.7± 0.2 4.2± 1.2 - 26.2± 0.4 14.6± 1.9 - [30, 112]
110Cd 240 MeV-α 14.47+0.44

−0.47 8.70± 0.87 42± 11 23.30+0.55
−0.48 7.32+1.09

−0.78 28± 11 [108]
386 MeV-α 14.2± 0.2 3.6± 0.6 - 26.4± 0.3 10.3± 1.3 - [30, 112]

112Cd 386 MeV-α 14.0± 0.3 2.9± 1.0 - 25.3± 0.7 7.9± 2.4 - [30, 112]
114Cd 386 MeV-α 13.7± 0.2 5.3± 1.0 - 25.9± 0.7 13.6± 3.2 - [30, 112]
116Cd 240 MeV-α 13.94+0.26

−0.30 8.31+0.59
−0.46 46± 11 23.58± 0.42 9.22+0.92

−0.72 44± 11 [108]
386 MeV-α 13.7± 0.2 4.2± 0.7 - 25.8± 0.5 12.0± 2.2 - [30, 112]

112Sn 240 MeV-α 14.92+0.15
−0.14 8.82+0.26

−0.29 32± 4 26.28+0.32
−0.23 10.82+0.39

−0.36 70± 10 [109]
386 MeV-α 15.4± 0.1 4.9± 0.5 - 26.2± 0.8 16.3± 4.0 102± 3 [16]

114Sn 386 MeV-α 15.0± 0.1 5.6± 0.5 - 26.1± 0.8 13.0± 3.4 123± 3 [16]
116Sn 240 MeV-6Li 15.32± 0.20 5.56+0.20

−0.19 66± 10 21.73± 0.20 2.80+0.26
−0.28 52+20

−14 [36]
240 MeV-α 14.38± 0.25 5.84± 0.30 25± 15 25.50± 0.60 12.0± 0.6 61± 15 [9]
386 MeV-α 15.6± 0.5 2.3± 1.0 4.9± 2.2 25.4± 0.5 15.7± 2.3 68± 9 [14]
386 MeV-α 14.9± 0.1 5.9± 0.5 - 25.9± 0.6 13.1± 4.2 102± 3 [16]

118Sn 386 MeV-α 14.8± 0.1 6.1± 0.3 - 26.0± 0.3 13.1± 2.0 120± 3 [16]
120Sn 386 MeV-α 14.7± 0.1 5.9± 0.3 - 26.0± 0.4 13.1± 1.9 150± 3 [16]
122Sn 386 MeV-α 14.4± 0.1 6.7± 0.3 - 26.3± 0.2 12.4± 1.1 147± 3 [16]
124Sn 240 MeV-α 13.31± 0.15 6.60+0.15

−0.13 40± 4 25.06+0.22
−0.21 13.87+0.24

−0.28 93+12
−13 [109]

386 MeV-α 14.3± 0.1 6.6± 0.3 - 25.7± 0.5 10.2± 1.6 129± 6 [16]
144Sm 240 MeV-α 14.00± 0.30 8.0± 0.60 32± 15 24.51± 0.40 7.21± 0.40 64± 12 [9]

386 MeV-α 13.04± 0.34 4.8± 0.8 23± 1 25.4± 0.6 19.9± 1.9 109± 2 [8]?
148Sm 386 MeV-α 12.95± 0.45 5.6± 0.9 25± 1 25.2± 1.1 19.4± 2.8 103± 3 [8]?
150Sm 386 MeV-α 12.91± 0.61 5.6± 1.3 33± 2 25.1± 1.4 20.7± 4.5 122± 5 [8]?
152Sm 386 MeV-α 12.77± 0.37 7.2± 0.9 29± 1 25.1± 1.0 21.6± 3.4 103± 5 [8]?
154Sm 386 MeV-α 12.75± 0.33 8.2± 1.0 32± 1 25.1± 1.0 22.6± 4.2 102± 3 [8]?
204Pb 386 MeV-α 12.8± 0.3 3.6± 1.3 - 22.6± 0.8 - - [30, 112]
206Pb 386 MeV-α 12.2± 0.3 4.0± 1.4 - 22.7± 1.1 - - [30, 112]
208Pb 240 MeV-α 13.26± 0.30 5.68± 0.50 24± 15 22.20± 0.30 9.39± 0.35 88± 15 [9]

386 MeV-α 13.0± 0.1 1.1± 0.4 7.0± 0.4 22.7± 0.2 11.9± 0.4 111± 6 [14]
386 MeV-α 12.3± 0.3 4.2± 1.3 - 22.5± 0.9 - - [30, 112]

(HE) component of this bi-modal distribution needs to be considered in obtaining a value of KA from
the energy of the ISGDR. Nearly all the expected L=1 EWSR strength is observed under this HE peak
in all cases.

Incidentally, the ISGMR and ISGDR data in 208Pb give a consistent value for the finite-nucleus
incompressibility KA, and hence K∞ [33, 120] (cf. Sec. 6).

5.3 “Softness” of Off-shell Nuclei

Most nuclei are neither magic nor spherical. Still, in the 1980s and 1990s, but also in the first years after
the turn of the new millennium, theoretical attention was focused on 208Pb and on 90Zr, the canonical
“doubly closed shell nuclei”. In measurements of ISGMR strengths in the Sn isotopes (A=112–124)
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[86, 16], however, it was observed that the centroids of the strengths of the ISGMR were consistently
lower (by as much as 1 MeV) than those predicted by theoretical calculations, both relativistic and
non-relativistic, that correctly reproduced the ISGMR energies for 208Pb and 90Zr (see Fig. 14). This
led to the now infamous question: “Why are Tins So Soft?” [121, 122, 123]. [We understand that the
author of Ref. [122] had originally used the word “fluffy”, but that was changed by the editors to “soft”
[124]; as it happens, “fluffy” has found wide informal acceptance among the researchers in the field.]
This effect was confirmed in measurements of the ISGMR strength distributions in the Cd isotopes
(A=106–116) as well [27].

This question remains unanswered so far, despite several attempts by different theoretical groups.
A lot of effort has since been devoted to exploring the effects of “superfluidity” on ISGMR, and nuclear
incompressibility, in nuclei [125, 126, 127, 128, 123, 60, 61]. Superfluidity is certainly relevant, and
depending on the model can explain a part of the “fluffiness” but does not seem to solve the issue
completely.
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Figure 14: Systematics of the moment ratios m1/m0 for the ISGMR strength distributions in the
Sn isotopes. The experimental results (filled squares) are compared with results from nonrelativistic
RPA calculations (without pairing) by Colò et al. [129] (filled circles), and relativistic calculations of
Piekarewicz [122] (triangles). Figure adopted from Ref. [16].

In Ref. [125], QRPA calculations on top of HFB have been performed for the Sn isotopes and it
has been found that pairing shifts the centroid energy of the ISGMR downwards by several hundreds
of keV. Still, the value of K∞ that is extracted from the Sn data is lower than that extracted from
the Pb data by about 10%. Pairing introduces a significant source of uncertainty. Usually, only the
ground-state average pairing gap is used to fix the effective pairing force in nuclei and in such a way an
unambiguous determination of the pairing functional is simply not possible. Different pairing effective
interactions like volume, surface or mixed pairing forces, can equally well fit the ground-state average
gap and still produce different results for other observables like properties of low-lying states etc. This
has been the case in the calculations of Ref. [125], in which different pairing forces produce different
values for the ISGMR energy; similar effects are visible in the HF plus BCS calculations of [128] which
are also extended to Cd and Pb isotopes.

In Refs. [123], much more systematic investigations have been performed, having as object the
ISGMR in a large number of semimagic nuclei along the isotope chart, and including not only the
measured Zr, Sn and Pb isotopes but also neutron-rich systems. This has allowed, as a by-product, the
fit of Eq. (39) within the model, as we have recalled above.
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Along a similar line, also the authors of Ref. [61] have considered a relatively large sample of nuclei
and isotopic chains. They have paid special attention to the self-consistency in the pairing channel, and
included pairing forces that depend on the neutron-proton imbalance.

The conclusion of Refs. [125, 128, 123] is that it is difficult to reconcile 208Pb and Sn data, namely
to reproduce both with a single model having a given value of K∞. This point is illustrated in Fig. 15.
We include for simplicity only 120Sn and compare it with 208Pb. The centroid energies of the ISGMR
in these two nuclei are shown with black and red circles, respectively. We display results coming from
different QRPA calculations performed in the references we have mentioned, and compare them with
the experimental data (horizontal lines). It is clear that models that reproduce the ISGMR in 208Pb
tend to predict an energy in 120Sn that is too high and, conversely, those who perform well in 120Sn
underestimate the ISGMR energy in 208Pb. As stated clearly in [123], the energy difference between
the ISGMR in the two nuclei is systematically overestimated. Compared to 208Pb, Sn seem to indicate
a value of K∞ that is 10% smaller or even a bit more.
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SkM* + mixed (4)

SLy4 + vol. (5)
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Figure 15: ISGMR centroid energies in 208Pb and 120Sn predicted by different Skyrme models plus
different pairing forces. “Vol.”, “Surf.”, “Mixed” and “Sep.” means, respectively, volume, surface,
mixed and separable pairing forces. The results are taken from the references mentioned in the text:
(1) and (2) from [125], (3) and (4) from [128], (5) and (6) from [123], (7) from [61]. The horizontal lines
correspond to the experimental data.

Piekarewicz and Centelles [130] created a hybrid model specifically to reproduce the ISGMR energies
in the Sn isotopes; the model has a significantly softer incompressibility coefficient for neutron-rich
matter. The predictions of this hybrid model fall within 0.1 MeV of the experimental data for the
full Sn isotopic chain if one takes into account the uncertainties in the data. However, although the
improvement in the case of the Sn isotopes is significant and unquestionable, an important problem
remains: the hybrid model underestimates the GMR centroid energy in 208Pb by almost 1 MeV.

Further, in calculations using the T5 Skyrme interaction within the quasiparticle time blocking
approximation (QTBA) approach, Tselyaev et al. [131] obtained the ISGMR strength distributions
in all the Sn isotopes in good agreement with the experimental data, including the resonance widths.
However, T5 has the associated K∞ value of only 202 MeV, which is significantly lower than that
extracted earlier from the ISGMR’s in 208Pb and 90Zr. While the agreement with the experimental
data is impressive (and, indeed, reproduces the A-dependence rather well), it does leave the question
of “softness” of the Sn nuclei unanswered.
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Incidentally, calculations in the RMF approach with the DD-ME2 interaction [132], also reproduce
the centroids of the ISGMR in the Sn isotopes rather well [133]. Concern has been expressed, however,
that these calculations display significant fragmentation of the ISGMR strength, i.e. the peak and
centroid energies are not quite the same.

The conclusion from all these studies is unequivocal: if from the double-magic nuclei one turns to
Sm, Sn and Cd, data seem to indicate a lower value of K∞, which clearly points to the present limit
of our models and our understanding. As more and more data becomes available on off-shell nuclei, it
might be possible to explore this question in more detail theoretically.

Figure 16: The ISGMR strength distributions observed in 204,206,208Pb. Solid lines represent Lorentzian
fits to the data. The peak position is indicated in each case. Figure adopted from Ref. [30].

A very intriguing proposal to resolve this question was put forward by E. Khan [126, 127] that the
mutual enhancement magicity (MEM) effect may play a role in nuclear incompressibility as well. MEM
refers to a strong underbinding observed in the Hartree-Fock-Bogoliubov (HFB) mass formulas for all
doubly magic nuclei and their immediate neighbors formed by adding or removing not more than one
nucleon [134, 135]. It was argued that 208Pb, being a doubly-magic nucleus, is “stiffer” than the open-
shell nuclei and the incompressibility obtained from doubly-magic nuclei would invariably lead to an
overestimation of the ISGMR energies in the open-shell nuclei [126, 127]. While it was not at all clear
as to why the MEM effect in nuclear masses would translate to nuclear incompressibility as well, Khan
predicted [127] from calculations in the constrained Hartree-Fock-Bogoliubov (CHFB) framework that
the ISGMR centroid energy in 208Pb would be higher than the corresponding values in the 204,206Pb
isotopes by ≈600 keV. The predicted excitation-energy difference was large enough to be examined
experimentally, considering the current experimental uncertainties of ISGMR measurements, and these
measurements were carried out at RCNP [85, 112]. However, the ISGMR strength distributions of
the 204,206,208Pb isotopes, measured in the same experiment, were found to be practically identical (see
Fig. 16), ruling out any consequences of the MEM effect in nuclear incompressibility, and leaving the
question of “softness” of the open-shell nuclei an important “open problem” in nuclear structure theory
[123].
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6 Definition of the nuclear incompressibility and its extrac-

tion from data

In this Section, we define in precise terms the incompressibility of uniform symmetric matter, K∞, and
deduce an analogous and plausible definition for the same quantity associated to a finite nucleus, KA.
We relate these latter to the ISGMR and ISGDR energy. Some of these concepts have been already
introduced in previous review papers [136, 137, 138].

6.1 Definition of the infinite matter and finite nucleus incompressibility

When dealing with bulk materials, one usually define their compressibility as

χ ≡ − 1

V

(
∂P

∂V

)−1

, (24)

where P and V are, respectively, pressure and volume. The inverse of this quantity, namely the
incompressibility, χ−1, can be straighforwardly introduced. For instance, water and steel have values of
χ−1 of 2.2 · 109 and 1.6 · 1011 Pa, respectively.

If we consider a system at zero temperature, with a fixed number of particles A, where the density
ρ = A/V is the basic variable, the incompressibility can also be written as

χ−1 = ρ3 d
2

dρ2

(
E

A

)
. (25)

Nuclear matter is an ideal object but also a fairly good approximation of matter inside the atomic nuclei.
Matter inside neutron stars is also rather uniform over a broad density range. Hence, the interest in the
incompressibility in the nuclear case. We consider the case of symmetric matter, where the numbers of
protons and neutrons are the same.

Symmetric nuclear matter has a state of minimum E/A at the so-called nuclear saturation density,
ρ0 = 0.166 fm−3. Around this minimum, one can write

E

A
(ρ) =

E

A
(ρ0) +

1

2
K∞

(
ρ− ρ0

ρ0

)2

+ . . . , (26)

where the factors come from the fact that this expansion has been conceived and written in terms of
the Fermi momentum, kF , and where the compression modulus or nuclear incompressibility K∞ shows
up as

K∞ = 9ρ2
0

d2

dρ2

(
E

A

)
ρ=ρ0

. (27)

This quantity is related to the incompressibility χ−1 that has been previosuly introduced by

K∞ =
9

ρ0

χ−1. (28)

Both quantities are a signature of the curvature of E/A around its minimum or, in other words, of the
stiffness of symmetric nuclear matter. K∞ has dimension of energy and can be expressed in MeV. We
shall discuss in this paper values for this quantity of the order of 250 MeV; this means, if we translate
back in terms of χ−1, that nuclear matter is more incompressible than steel by almost 22 orders of
magnitude.

The value of K∞ has been the subject of early investigations, but all of them amounted to basically
mere speculations before the compression modes of nuclei were experimentally identified: Bohr and
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Mottelson [139] mention values of the order of 120-130 MeV, for example. The discovery of compressional
modes in finite nuclei paved the way for the investigation of K∞ discussed in this review. We should,
therefore, introduce the incompressibility of a finite nucleus A.

In finite nuclei, the density is not uniform and so is not a simple number. The simplest variation
that keeps the shape of the system is a variation of only the second moment of the density i.e. 〈r2〉. If
we transform accordingly the second derivative in Eq. (27), we obtain the following definition of the
finite nucleus incompressibility:

KA = 4〈r2〉20
d2

d〈r2〉2

(
E

A

)
〈r2〉=〈r2〉0

. (29)

In general, for small variations of the nuclear density induced by an external operator F , we can
write the nuclear Hamiltonian as

H ′ = H + λF, (30)

where λ plays the role of a small perturbative parameter. If the expectation value of H had a minimum
(for instance, within the HF or HFB approximation), the expectation value of H ′ will have a minimum
as well for every value of λ. Within these assumptions, it is straightforward to write

d〈H ′〉
d〈F 〉

=
d〈H〉
d〈F 〉

+ λ = 0, (31)

where all expectation values are ground-state expectation values (i.e. expectation values in the state
with minimal energy). The last equation implies

d〈H〉
d〈F 〉

= −λ. (32)

We can now invoke some theorems that are valid at least within approximations like the nonrela-
tivistic HF plus RPA, or HFB plus QRPA. These theorems involve the so-called sum rules associated
with an external operator that have been introduced at the start of the paper (Sec. 2).

The energy-weighted strength function m1 can be obtained from the Thouless theorem3, according
to which

m1 =
∑
n

En|〈n|F |0̃〉|2 = 〈0| [F, [H,F ]] |0〉. (33)

In this equation, |0̃〉 is the (Q)RPA ground-state as above but |0〉 is the HF ground-state: this feature
makes the expectation value of the double commutator easy to be evaluated [2]. Another theorem, still
due to Thouless, is called dielectric theorem4, and concerns the inverse-energy weighted sum rule m−1.
It states that

m−1 =
1

2

d〈F 〉
dλ

=
1

2

d2〈H〉
dλ2

. (34)

We now denote 〈H〉 by E and we join the result of Eq. (32) with the dielectric theorem (34), so
that we arrive at

d2E

d〈F 〉2
= − dλ

d〈F 〉
= − 1

2m−1

. (35)

We now restrict ourselves to the monopole operator. The EWSR provided by (33) reads

m1 =
2~2

m
〈r2〉0. (36)

3The original paper by Thouless [140] deals with the RPA case whereas the extension to QRPA can be found in Ref.
[141].

4Also in this case, the original paper by Thouless [142] deals with HF plus RPA and the extension to HFB plus QRPA
is much more recent and can be found in Ref. [143].
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Therefore, the finite nucleus incompressibility (29) becomes

KA = 4〈r2〉20
d2

d〈r2〉2

(
E

A

)
〈r2〉=〈r2〉0

=
m〈r2〉20
A~2

m1

m−1

. (37)

The ISGMR energy can be identified with the so-called constrained energy Ec ≡
√

m1

m−1
. From the

latter formula we then deduce

EISGMR =

√
~2AKA

m〈r2〉0
, (38)

which is precisely Eq. (3.48) of [136]. If we assume that the matter radius is known with sufficient
accuracy (for instance, because elastic scattering data are obtained at the same time when the monopole
is excited and measured), then this latter relation shows how the ISGMR energy can provide the finite
nucleus incompressibility.

Another possibility consists in identifying the ISGMR energy with Es ≡
√

m3

m1
, that is, the so-called

scaled energy. A formula similar to Eq. (38) can be derived [144], and in general this leads to a larger
value of KA since Es is larger than Ec. Using the Thomas-Fermi theory in the limit of very large A, the
authors of Ref. [145] have deduced that Ks

A extracted from Es should be larger by a factor 10/7 than
Kc
A extracted from Ec. Anyway, a relationship between the ISGMR energy and the square root of KA

can be inferred in either case, and the precise value of the factor is not relevant to our discussion below.
The same formulas can be also found in [146], where a simple yet realistic form for the energy

functional is assumed and the hydrodynamic model is employed. In this paper, also the expressions
of KA both from constrained and scaled ISGDR energies are reported [cf. Eqs. (12) and (13).] The
correlation between ISGDR energies and the square root of KA is found in these expressions as well.
This is the key point for the following.

Now, we move to the extrapolation to the infinite matter case.

6.2 Relationship between KA and K∞

One could assume the existence of a relationship between the finite nucleus incompressibility KA and
the nuclear matter incompressibility K∞, in terms of an expansion of the same kind as the liquid-drop
formula, the so-called leptodermous expansion:

KA = K∞ +KsurfA
−1/3 +Kτ

(
N − Z
A

)2

+KCoulZ
2A−1/3. (39)

Blaizot, in Sec. 6.2 of [136], has started from a simple liquid-drop expression for E/A and has extracted
formally the terms defined by this, through the use of Eq. (37). One key ingredient in this derivation
are the formulas related to the existence of the saturation density ρ0. From the discussion by Blaizot,
it is also useful to retain the simple but important concept that the coefficients that appear in Eq. (39)
cannot be interpreted as being second derivatives of the corresponding coefficients in the mass formula.
Some other works also deal with the derivation of Eq. (39) (cf. e.g. [147]).

Eq. (39) can be used (or not used!) in different ways. Three strategies are relevant for our discussion.

1. One could trust Eq. (39) literally, and try to determine the parameters appearing therein from
experimental data.

2. One could use Eq. (39) in a very mild way, and infer from it only a linear correlation between
KA and K∞. Together with Eq. (38) and the considerations made below that formula, this linear
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correlations would imply, among other things, that

δK∞
K∞

≈ 2
δEISGMR

EISGMR

; (40)

we will use this rule of thumb throughout the paper.

3. One could try different ways to correlate K∞ to data, as the previous two strategies may be not
free of difficulties.

The strategy # 3 is mainly used by the authors of Refs. [148, 149]. Most of the work of the last two
decades, and consequently most of our discussion here, is based on strategy # 2. As we discuss in
this subsection, strategy # 1 has many drawbacks. A general consensus has emerged that a far better
procedure is to trust microscopic theories (mainly those based on EDFs as outlined in Sec. 4) that can
calculate on equal footing both KA (or, equivalently, the ISGMR energy) and K∞. If a given theory
can reproduce the experimental values of KA, the associated value of K∞ can be considered the correct
one. Unfortunately, we will conclude at the end that there is not at present a single model that can
reproduce all measured monopole data. By collecting the efforts that theorists have made so far, we
will set limits more than pin down a unique value. This partial and not total success of strategy # 2
has motivated some attempt to go back to strategy # 1 as a qualitative guideline, or within localized
regions of the isotope chart.

We start with discussing strategy # 1. After the first systematic measurements of the monopole
reasonances, in the 1980s, there was hope that they could lead to extrapolating the value of K∞ [136].
This hope faded during the 1990s; in fact, trying to use quantitatively the liquid-drop expansion (39) in
order to extract the values of the different terms, using the experimental values of KA available at that
time, was proven to be unreliable [150, 151]. Data were scarce and, even more importantly, parameters
had correlations. In practice, the authors of [151] have shown that values between 200 MeV and 350
MeV are all possible in following this procedure. This is why, at the turn of the century, consensus has
emerged that only theory can provide a bridge between the measurements in finite nuclei and the value
of K∞. Recently, other theoretical papers that we shall discuss below [60, 152] have strenghtened the
rationale behind this belief.

A further problem in the use of Eq. (39) is the proper definition of the energy to be inserted in KA

so that the liquid-drop expansion is meaningful. In Sec. 6.1 we have seen that using the constrained or
the scaled energy does not lead to the same value of KA. The former (latter) choice is associated with
using the sum rule m−1 (m3), that is, with measurements at low (high) energy that may suffer from
larger errors than those around the main peak. Microscopic models based on EDFs are free from these
drawbacks; one compares the ISGMR and ISGDR energies with experiment directly, and in this way
one can get rid of the ambiguities related to the use of either the constrained or the scaled energy.

Despite all the serious warnings, a recent attempt to revisit the liquid drop expansion to extract
K∞ and the other parameters that appear in Eq. (39) can be found in Ref. [153]. The final result
provides larger K∞ than all the attempts based on other strategies, although there is not absolute
incompatibility. Ref. [153] also constitutes an excellent overview of our present understanding of the
various terms of Eq. (39) although the pairing term is not considered. The results obtained in Ref.
[153] are also reported in Table 3.

The best known term, albeit the least important, is of course the Coulomb term that reads:

KCoul =
3

5

e2

r0

[
1− 27ρ2

0

K∞

d3

dρ3

(
E

A

)
ρ=ρ0

]
. (41)

The second term in the parenthesis introduces an uncertainty on this quantity, which is nonetheless
estimated to be less than about 20% in Ref. [154], where the value KCoul = 5.2 ± 0.7 MeV is quoted,
extracted from a host of EDFs. Other estimates do not significantly vary from this range.
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In the case of Ksurf , a certain tendency to be related to −K∞ has been pointed out in Ref. [155],
where extended Thomas-Fermi calculations have been carried out using EDFs in semi-infinite nuclear
matter. However, we cannot make any firm statement about the value of Ksurf . The authors of Ref.
[153] claim that the (negative) ratio Ksurf/K∞ is much larger in absolute value, for example. Certainly,
as we shall argue below, our incomplete knowledge of the density dependence of the effective nuclear
interaction or of the EDF, plays a significant role here.

A similar statement can be made for the symmetry term, Kτ . However, more detailed investigations
have concerned this term recently, as we discuss below.

Even more debated is the curvature termKcurvA
−2/3 which is another possible extension of the liquid-

drop expansion. Last but not least, we should mention the possibility that Eq. (39) is complemented
with a pairing term Kpair. This possibility has been explored in Ref. [156] by employing some effective
pairing interactions that produce realistic values of the pairing gaps in uniform matter. The conclusion
is that the pairing term has only a small effect, of the order of 2% or slightly more. We will use this
fact below.

All this discussion should make the reader aware of our present understanding of the various terms
of the liquid-drop model expansion of KA. We end this subsection by stressing that, within a given
model, it is possible to calculate KA in as many nuclei as desired and then fit the results with a formula
of the type (39). This is a useful test, albeit biased by the model assumptions.

Extrapolations of KA for large A are extremely demanding. Already in Ref. [157], it was shown
that one needs to go to extremely large nuclei to recognise the behaviour of KA in terms of the liquid
drop model formula. More recently, in the case of the binding energy formula and with modern EDFs,
it has been confirmed in [158] that one needs to go to nuclei with ≈ 106 nucleons, discard the Coulomb
force, deal with shell corrections, and still be left with significant uncertainties.

The authors of [60] have not attempted such an extrapolation but simply fit their QRPA results with
Eq. (39), by including a surface symmetry term but not curvature or pairing terms. Such an attempt
should be taken as a parametrization of the theoretical results and/or a check of general properties
and model features. We report in Table 3 the results obtained by fitting one of the models, namely
UNEDF0 complemented with zero-range pairing.

One should note that, in Ref. [60], values of m1/m0 have been used, while this is not supported by
the theoretical arguments discussed in Sec. 6.1. This may explain why the values for K∞, like the one
in the Table, are different than the nominal values associated with the EDF.

Within a similar philosophy, but in a different way, the authors of Ref. [152] have used the NL3
functional and calculated the monopole energies in 750 nuclei within the extended Thomas-Fermi ap-
proach. Then, they have extracted the coefficients of Eq. (39) by means of a fit. The values obtained
therefrom are incompatible with the nominal values of NL3 obtained in infinite or semi-infinite matter.
This is due to the approximated form of Eq. (39). The conclusions of Refs. [60, 152] points clearly to
the drawbacks that are inherent in the use of the leptodermous expansion of Eq. (39).

Ref. [153] Ref. [60]
K∞ 250 – 315 MeV 257 ± 4 MeV

Ksurf/K∞ -2.4 – -1.6 -1.6 ± 0.06
Kτ -810 – -370 MeV -550 ± 30 MeV
Kτ,s -1020 – 160 MeV 740 ± 100 MeV
KCoul -5.2 ± 0.7 MeV -5.1 ± 0.4 MeV

Table 3: Very different attempts to extract the values of the coefficients of the terms appearing in Eq.
(39). See the text for a complete discussion.
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6.3 Extraction from 208Pb and 90Zr data

A first, certainly too naive, approach assumes that the exact EDF has all the correct terms and re-
produces systematically the ISGMR energies of nuclei. Restricting first to heavy, magic and spherical
nuclei, among which 208Pb is the obvious benchmark, one could claim that the EDF that reproduces
the ISGMR energy in 208Pb has the correct incompressibility. Different functionals are, however, built
by using different kinds of ansatz. In particular, they are characterised by different kinds of density
dependence. This creates a model dependence in the extraction of K∞, even restricting to a single
nucleus.

This has been clearly illustrated for the first time in Ref. [129]. In that work, Skyrme forces with
different density dependence have been determined by using the same fitting protocol and reaching
comparable quality. If one changes the density dependence, one can reproduce the ISGMR energy in
208Pb either with forces having K∞ around 230 MeV or around 250 MeV. This range spans, to a good
extent, also the incompressibility values associated with Gogny and RMF functionals. Going back to
Fig. 10, one can note the similar results obtained with three functionals that have, respectively, K∞
= 225 MeV (D1M), K∞ = 230 MeV (SAMi), and K∞ = 251 MeV (DD-ME2). We can add a specific
word concerning relativistic functionals. Point-coupling Lagriangians introduced in Ref. [159] reproduce
the ISGMR in 208Pb with the same quality as DD-ME2 and with a lower value of K∞, that is, 230
MeV. The conclusion, which was already drawn a few years ago by several authors, is that choosing a
nonrelativistic or a covariant formulation is not at all the key element that contributes to our remaining
uncertainty on K∞.

Usually, the calculations that reproduce the ISGMR in 208Pb work in the case of 90Zr as well.
Looking (mainly) at those nuclei, the conclusion that K∞ should be in the range 240 ± 20 MeV has
been reached since about one decade [137]. We now turn our attention to non-magic nuclei.

6.4 Extraction from larger sets of nuclei: superfluid systems and more

Most nuclei are neither magic nor spherical. In the 1980s and 1990s, but also in the first years after the
turn of the new millennium, still attention was focused on 208Pb. Systematic measurements on the Sn
isotopes raised the concern whether superfluidity affects the ISGMR and, in turn, if superfluid systems
have a different incompressibility. Several works have since been devoted to the ISGMR in superfluid
nuclei [125, 126, 127, 128, 123, 61].

The issue has been already discussed in Sec. 5.3, where we had concluded that is difficult to reconcile
208Pb and Sn data, namely to reproduce both with a single model having a given value of K∞ (cf. Fig.
15).

Along a similar line, the authors of Ref. [61] have considered a relatively large sample of nuclei and
isotopic chains. They have paid special attention to the self-consistency in the pairing channel, and
included pairing forces that depend on the neutron-proton imbalance. Our aforementioned conclusion
is also echoed by the authors of Ref. [61], and made more general: if from the double-magic nuclei one
turns to Sm, Sn and Cd, data seem to indicate a lower value of K∞, which clearly points to the present
limitations of our models and our understanding.

6.5 Alternative methods

The impasse produced by the question “Why is Sn (with other open-shell nuclei) so fluffy ?” has moti-
vated some attempts to shift the current attitude towards the problem of the nuclear incompressibility.

As we have already mentioned, the discrepancy between the incompressibility from different nuclei
point to our incomplete understanding of EDFs, or to the fact that they are characterised by different
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balance of volume, surface and asymmetry incompressibility. The surface term is certainly one of the
first which must be put under scrutiny.

The importance of the nuclear surface is the starting point of the reasoning done in Refs. [148, 149];
therein, the authors have pointed out that in medium-heavy nuclei the average density is not the
saturation density but rather something around ≈ 0.1 fm−3, which is defined as crossing density ρc.
Many nuclear properties like the symmetry energy or the pairing gap are known in fact to be sensitive
to this average density. At such a density models like different EDFs tend to give similar predictions
for different observables. Consequently, the authors of [148, 149] have defined a density-dependent
incompressibility that reads

K(ρ) = 9ρ2
0

d2

dρ2

(
E

A

)
ρ

, (42)

and shown that this quantity has the smallest disperson, when microscopically calculated, around the
crossing density ρc. The spread in the microscopic predictions is, then, associated with the derivative
of the density-dependent incompressibility around ρc, or with

Mc ≡ 3ρc
d

dρ
K(ρ)

∣∣∣∣
ρc

. (43)

This claim is supported by correlation plots that show better EISGMR−Mc correlations than EISGMR−K∞
correlations, although in a limited number of nuclei. It remains to be ascertained to which extent the
limited number of parameters in the EDFs affects these conclusions.

7 Effects of Deformation on ISGMR and ISGDR

The splitting of the IVGDR into two components in deformed nuclei has been known for a very long time;
this splitting was attributed to the different frequencies of dipole oscillations along the major and minor
axes of a symmetric ellipsoidal nuclear shape [2]. The ISGQR, on the other hand, exhibited only a small
broadening due to deformation of the ground state: the L=2 resonance splits into three components
corresponding to the K quantum numbers K=0, 1, and 2. These components are rather closely-spaced
leading to an overall increase in ISGQR width in a deformed nucleus (154Sm, for example), as compared
with that in a spherical nucleus (144Sm) [160]. Naively, one would have expected the L=0 ISGMR to
remain unaffected by the deformation of the ground state; however, one does see a “splitting” of the
ISGMR strength in deformed nuclei, as first reported by Garg et al. in 154Sm [161]. This “splitting”
results from a coupling of the K=0 component of the ISGQR with the ISGMR. The monopole and
quadrupole vibrations in the deformed nuclei no longer have a unique Jπ, each containing a mixture of
L=2 and L=0 instead. Thus, there are two K=0 states, the lower predominantly L=2, but containing
significant L=0 strength; the upper predominantly L=0 but with a small amount of L=2 strength [161].
This is represented schematically in Fig. 17.

In the Sm isotopes, which range from the “spherical” 144Sm (deformation parameter β2 = 0.09) to
the well-deformed 154Sm (β2 = 0.34), the evolution of the ISGMR strength as a function of increasing
deformation is observed rather succinctly [8]: a single peak in 144Sm transmutes into two clearly dis-
cernible components in case of 154Sm. Indeed, this transmutation is evident even in the “0◦” inelastic
scattering spectra (see Fig. 18). A clear two-component structure in the ISGMR strength distribution
was reported in the A & M work as well [9, 162].

The effect of deformation on ISGDR is similar in that there is coupling between the K=1 (as well
as the K=0) components of the ISGDR (L=1) and the ISHEOR (L=3). However, because of the
aforementioned LE component of the ISGDR even in the spherical nuclei, this coupling is not as clearly
evident as in case of the ISGMR. However, two effects are discerned in going from 144Sm to 154Sm, both
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Figure 17: Schematic representation of the effect of ground state deformation on the ISGMR and
ISGQR. Figure courtesy of K. Yoshida, Kyoto University, Japan.

consistent with the coupling between the K=1 components of the two resonances [34, 8]: i) the relative
strength of the LE component of the ISGDR increases smoothly with nuclear deformation, whereas the
strength of the HE component remains constant; ii) the width of the LE component also increases with
increased deformation. A direct comparison of the ISGDR strength in the deformed nucleus, 154Sm, is
complicated, of course, by the uncertain nature of the LE component.

The most interesting result on the effect of deformation on the ISGMR strength was presented
recently in the nucleus 24Mg [91, 92]. Generally, the ISGMR strength (indeed, all multipole strengths)
in the lighter-mass nuclei (A<58) is fragmented over a wide excitation energy range and does not form
a nice “peak” as in the higher-A nuclei (see, for example, Refs. [98, 89]). With that, any effects
of deformation would be expected to be very difficult to discern. However, in recent RCNP work
on this deformed nucleus, a two-peak structure was observed in the ISGMR strength distribution,
indicative of the “splitting” of the ISGMR. The observed strength distribution is in good agreement
with microscopic calculations for a prolate-deformed ground state for 24Mg, carried out in a deformed
Hartree-Fock-Bogoliubov (HFB) approach and the quasiparticle random-phase approximation (QRPA)
with a Skyrme and Gogny energy-density functional [163, 164], and is in contrast with that expected if
a spherical ground state is assumed for this nucleus (see Fig. 19). Another set of calculations, with the
SkM*, SVbas, and SkPδ interactions, further confirms that the E0 peak at Ex ∼16 MeV is caused by the
deformation-induced coupling of the ISGMR with the K=0 part of the ISGQR [165]. This is the first
time that such a splitting had been observed in a light-mass nucleus, indeed in any nucleus other than
the well-deformed Sm nuclei (as discussed above) and 238U [166]. A similar effect has since been observed
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Figure 18: Inelastic α scattering spectra at θav=0.7◦ and Eα=386 MeV for 144−154Sm. Figure from
Ref. [8].

in the oblate-deformed nucleus 28Si as well [167]. Recently, Kvasil and collaborators [168, 169] have
carried out a detailed and systematic theoretical investigation of the effects of deformation on ISGMR
within the QRPA approach, using two different Skyrme forces. Consistent with the experimental results
and previous theoretical work, they find that the ISGMR broadens and attains a two-peak structure
due to the coupling with the quadrupole giant resonance.

8 Are There Other Structure Effects on ISGMR?

Since giant resonances and nuclear incompressibility are collective (bulk) phenomena, one expects only
a smooth variation of the properties of the ISGMR with mass (e.g. the A1/3 dependence of the energy)
and one does not expect very strong variations related to the internal structure of the nuclei (the shell
model orbitals being populated, for example).

This picture of purely collective behavior was put to question by recent results on the Zr and Mo
isotopes reported by the TAMU group [170, 106, 105, 107]. They observed a dramatic variation in the
extracted ISGMR strength distributions in these nuclei. In particular, the A=92 nuclei, 92Zr and 92Mo,
emerged quite disparate from the others: the ISGMR energies (EISGMR) for 92Zr and 92Mo were observed
to be, respectively, 1.22 and 2.80 MeV higher than that of 90Zr. Consequently, the KA values determined
for 92Zr and 92Mo were, respectively, ∼27 MeV and ∼56 MeV higher than the KA for 90Zr (see Fig. 20).
This was the consequence of significant ISGMR strength at higher excitation energies, constituting an
additional “peak” at Ex ∼25 MeV. This second peak was excited with much higher strength in the
A=92 cases when compared with that in the other measured Zr and Mo nuclei (see Fig. 21). These
results implied significant nuclear structure contribution to the nuclear incompressibility in this mass
region. Such nuclear structure effects have not been observed in any of the investigations of ISGMR
going back to its first identification in the late 1970’s [171, 172] and, indeed, were contrary to the
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Figure 19: ISGMR strength distribution in 24Mg (solid circles). The dash-dotted (blue) and solid (red)
lines show microscopic calculations for spherical and prolate ground-state deformation, respectively.
Figure from Ref. [92].

	  

Figure 20: The scaling model KA values obtained from the measured scaling energies
√
m3/m1 are

shown for the Zr isotopes (squares) and for the Mo isotopes (triangles) plotted versus A. The error bars
reflect the uncertainties in

√
m3/m1. Also shown are lines connecting the HF-based RPA values of KA

calculated within HF-RPA using the KDE0v1 interaction for the Zr (dashed line) and Mo (black line)
isotopes. Figure from Ref. [170].

standard hydrodynamical picture associated with collective oscillations [173].

An experiment was subsequently performed at RCNP to further investigate and elucidate this un-
usual, and unexpected, effect. In “background-free” inelastic α-scattering experiments on 90,92Zr, and
92Mo, no evidence was found for this anomalous effect in the A=92 nuclei [87, 174]. This was clear al-
ready in the 0◦ spectra (where the ISGMR is excited maximally) and in the “difference spectra” (which
contain primarily the ISGMR strength; see the discussion in the section on Experimental Techniques):
these spectra are virtually identical for the three nuclei. This was further corroborated by extracting
the ISGMR strengths using MDA; the extracted strengths were also observed to be nearly identical
and, in particular, no discernible differences were observed in the the strength near Ex ∼25 MeV for
the three nuclei (see Fig. 22).

These RCNP results appear to establish clearly, and strongly, that determination of nuclear incom-
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Figure 21: The black histograms show the fraction of the r2Y00 sum rule obtained for Mo and Zr isotopes
plotted as a function of excitation energy. Superimposed are Gaussian fits to the two components of the
distributions as well as the sum of the fits. On the left side are the strengths of the lower energy peak
while on the right side the strengths of the higher energy peaks are listed, all given as a percentage of
the r2Y00 sum rule. Figure from Ref. [170].

Ex (MeV)
10 15 20 25 30 35

IS
G

M
R

 S
tr

en
gt

h 
(f

m
4 /M

eV
)

400

800

1200

90Zr
92Zr 
92Mo

Figure 22: ISGMR strength distributions for 90Zr (filled circles), 92Zr (filled squares), and 92Mo (filled
triangles). The solid line represents the Lorentzian fit for 90Zr. Figure from Ref. [87].

pressibility in nuclei is not influenced in any appreciable manner by the underlying nuclear structure.

The obvious question is why the RCNP results are so different from those obtained by the TAMU
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group. The answer, most likely, lies in the way the “background” in the inelastic scattering spectra is
accounted for in the two approaches (see the discussion in Sec. 3). In the RCNP work, all instrumental
background is eliminated because of the superior optical properties of the Grand Raiden Spectrometer
(see, e.g., Fig. 3), leaving the physical continuum as part of the excitation-energy spectra. In the TAMU
work, an empirical background is subtracted which leads to subtraction of the physical continuum as
well. It is quite possible, and perhaps likely, that this background subtraction approach is responsible
for the differing strengths observed for various nuclei in their work. Since there is no arbitrariness
involved in the background-subtraction procedure employed in the RCNP work, it has been argued
that their results may be deemed more reliable [87].

9 Kτ from ISGMR in Sn and Cd Isotopes

Measuring the ISGMR in a series of isotopes can provide an “experimental” value for the asymmetry
term of nuclear incompressibility, Kτ [see Eq. (39)]. As pointed out by Patel et al. [27], the finite-nucleus
asymmetry term Kτ , although closely related, should not be confused with the corresponding term in
infinite nuclear matter – a quantity also denoted by Kτ at times, but written here as K∞τ . Indeed, K∞τ
should never be regarded as the A→∞ limit of the finite-nucleus asymmetry Kτ [136]. Yet the fact
that Kτ is both experimentally accessible and strongly correlated with K∞τ is vital in placing stringent
constraints on the density dependence of the symmetry energy. Recall that K∞τ is simply related to a
few fundamental parameters of the equation of state [130]:

K∞τ = Ksym − 6L− Q0

K∞
L , (44)

where Q0 the “skewness” parameter of symmetric nuclear matter and L and Ksym, respectively, are
the slope and curvature of the symmetry energy. It is the strong sensitivity of K∞τ to the density
dependence of the symmetry energy that makes the present study of critical importance in constraining
the EoS of neutron-rich matter.

In Eq. (39), we assume c ∼ −1 [155] and, as we have discussed in Sec. 6.2, KCoul is essentially a
model-independent term [154]. In this way, over a series of isotopes, the only term that varies in any
significant manner is the one corresponding to the neutron-proton asymmetry, (N − Z)/A and a value
for the associated coefficient, Kτ may be obtained from a fit to the isotopic data. An analysis of this
kind was first carried out by Sharma et al. in the late 1980s [175], but was later much improved by Li
et al. over the even-A 112−124Sn isotopes [86, 16].

Rearranging Eq. (39), one gets:

KA −KCoul
Z2

A4/3
≈ K∞(1 + cA−1/3) +Kτ

(
N − Z
A

)2

, (45)

which, for all practical purposes, is a simple quadratic equation in the asymmetry term, (N − Z)/A
(the A−1/3 term would vary only very little over the range of isotopes under consideration, leading to
reasonably treating the first term on the right hand side as a constant). From a quadratic fit to this
equation, with KA’s derived from their measurements of ISGMR in the Sn isotopes at RCNP, Li et
al. obtained an “experimental” value of Kτ = -550±100 MeV. In subsequent measurements on five Cd
isotopes (A=106, 110, 112, 114, 116), the same group obtained a value Kτ = -555±75 MeV, in excellent
agreement with the value obtained from the Sn isotopes [27]; in both cases, the quoted uncertainties
include the effects of the uncertainty in the KCoul term, for which a value of 5.2±0.7 MeV was used
from Ref. [154]. This value of Kτ is consistent with Kτ = −370±120 MeV obtained from the analysis of
the isotopic transport ratios in medium-energy heavy-ion reactions [176], Kτ = −500+120

−100 MeV obtained
from constraints placed by neutron-skin data from anti-protonic atoms across the mass table [177], and
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Kτ = −500±50 MeV obtained from theoretical calculations using different Skyrme interactions and
relativistic mean-field (RMF) Lagrangians [154].

Fig. 23 shows the fits to the Sn and Cd data from Refs. [16, 27] taken together.
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Figure 23: The difference KA − KCoulZ
2A−4/3 from ISGMR in the Sn and Cd isotopes plotted as a

function of the asymmetry parameter, (N − Z)/A. The solid and dashed lines represent quadratic fits
to the respective data. Data from Refs. [16, 27].

A caveat to the discussion above: the Kτ obtained from the measurements on the Sn and Cd
isotopes is only an “average” value, and the data cannot disentangle the volume symmetry term from
higher-order effects like the surface symmetry. It is possible, then, to execute similar fits including
higher-order terms and obtain very different values for Kτ , as has been shown by Pearson et al. [178]:
in fact, introducing the surface symmetry amounts to replacing

Kτ

(
N − Z
A

)2

→
(
Kτ,vol +Kτ,surfA

−1/3
)(N − Z

A

)2

. (46)

10 Decay measurements

Measurements of the charged-particle and neutron decays of the giant resonances can provide impor-
tant information on the microscopic nature of the resonances, in particular on the particle-hole states
involved. Because the giant resonances, in general, are located well above the particle separation thresh-
olds, particle emission is the dominant decay process that takes place and can occur either from the
initial 1p-1h state, leaving a single-hole state in the A−1 nucleus (direct component), or from the states
with partially or completely equilibrated configurations, resulting in an evaporation-like spectrum of the
emitted particles; the latter is termed the statistical component. The observation of particle emission
spectra observed in coincidence with the excitation of giant resonances can provide useful information
on the evolution of the decaying configuration and on the microscopic structure of the giant resonance
[2, 179].

Furthermore, the coincidence technique with particle decay gives a useful means to suppress the
backgrounds in inelastic scattering spectra and to reliably isolate resonances strengths. Indeed, such
measurements have been found, in many instances, to be very effective in eliminating both the in-
strumental background and the nonresonant continuum, thus overcoming the problems connected with
background subtraction discussed earlier, and allowing for a better determination of the giant-resonance
gross properties [2, 179].
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Several decay measurements were carried out in the 1980’s focused on the particle decay of ISGMR
and ISGQR. While charged-particle decay occurs preferentially in the light nuclei (A/60), neutron
emission is the dominant decay mode for the medium-to-heavy mass nuclei because of Coulomb barrier
effects. Also, in most cases, the observed decay, typically, had a large statistical component, making
the separation of the direct decay component an experimentally challenging task. Still, an excess of
neutron emission over statistical model calculations was identified for the ISGMR in some cases (see, for
example, the measurements reported in Refs. [10, 180] and the corresponding theoretical calculations
[73]).

The situation turns out to be somewhat different (in the positive sense) for the ISGDR. Continuum
RPA (CRPA) calculations predicted significant decay widths from the ISGDR in 208Pb to some proton-
hole states in 207Tl, and a similar behavior in other medium- and heavy-mass nuclei [181, 182]. Charged-
particle decay measurements are, in general, easier than their neutron-decay counterparts and the
predicted decay branching ratios were sufficiently large to make such measurements quite feasible within
the beam times typically granted for an experiment at international accelerator facilities.

	  

Figure 24: Double-differential cross sections for 208Pb(α, α′p), as a function of the excitation energy in
208Pb, gated on the indicated scattering angles and measured in coincidence with direct-decay protons
of (a) group A and (b) group B. The fits of the HEOR, ISGDR and the higher-lying bump (HLB) are
also shown. Group A and Group B refer to two enhanced structures in the final-state spectrum of the
low-lying proton-hole states in 207Tl generated by gating on the ISGDR region, and on scattering angles
of θc.m.. = 1.5◦–3.0◦. Figure from Ref. [94].

Two sets of proton-decay measurements have been performed, at KVI, Groningen, on 58Ni, 90Zr,
116Sn, and 208Pb, using 200-MeV α-particle beams provided by the AGOR superconducting cyclotron
facility [94, 96, 179], and at RCNP, on 58Ni and 208Pb, using 400-MeV α particles [88, 95]. In all cases,
significant decay was observed to specific particle-hole states in the daughter nuclei, in qualitative
agreement with the predictions of the theory; indeed, the agreement with theory was termed excellent
for 208Pb [94, 96, 95]. An example of the quality of the decay spectra from the KVI measurement on
208Pb is provided in Fig. 24.

A very intriguing aspect of the KVI measurement on 208Pb was the observation of the structure
identified as the higher-lying bump (HLB) in Fig. 24. DWBA calculations favored an L=2 character
for this structure, observed over the region of Ex=25–31 MeV. It was suggested that this “bump” cor-
responded to the excitation of the overtone of the ISGQR, the response to the second-order quadrupole
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Figure 25: Projection of 2-dimensional coincidence data onto the excitation-energy axis in 208Pb for the
indicated excitation-energy range in 207Tl. The spectrum shows primarily the true HE-ISGDR strength
distribution. Figure from Ref. [95].

operator. The excitation energy and width of this bump was reported as: Ex = 26.9±0.7 MeV and Γ
= 6.0±1.3 MeV [94]. If the quadrupole character for this mode were confirmed, it would correspond to
the first observation of the third compressional mode after the ISGMR and ISGDR.

Unfortunately, this mode was not unambiguously identified in subsequent RCNP p-decay measure-
ments on the same nucleus [95]. While there exists some strength in the RCNP decay spectra at the
location of the HLB reported in the KVI work, it is too small to allow arriving at any definitive conclu-
sion about its multipole character. This was most likely a consequence of the fact that the excitation
cross section for ISGDR is significantly larger when compared with the L=2 excitation cross section in
the angular range 1.0◦–1.5◦ covered in the RCNP measurement [95]. This structure has also not been
observed, so far, in any other nuclei on which singles or coincidence measurements have been made.

The observation of HLB is, nonetheless, a testament to the power of coincidence measurements–this
strength would be “buried” in the continuum, and hence unobservable, in the singles measurements.
Another useful result of these measurements was the clear evidence that the L=1 strength observed at
high excitation energies in the (α, α′) spectra did not belong to the ISGDR; as seen in Fig. 25, that
“spurious” strength is largely absent in the 208Pb(α, α′p) coincidence spectra [95].

11 Measurements in Nuclei Far from Stability

As radioactive ion beams of higher intensities become available, the investigation of the compression-
mode resonances in nuclei far from stability becomes extremely interesting in order to understand and
delineate the effect of large neutron-proton asymmetries on the nuclear incompressibility. For one, the
effect of the asymmetry term in going from incompressibility of individual nuclei to incompressibility of
infinite nuclear matter is quite important but not well understood. There also is the intriguing possibility
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of the observation of the soft GMR, akin to the soft giant dipole resonance (the so-called pygmy dipole
resonance) observed in the halo nuclei. Thus, one would be looking at two nuclear incompressibilities:
one for the core, the other between the core and the “halo” or the “skin”.

Calculations by Sagawa et al. [183, 184] had indicated a threshold effect in the monopole response
resulting in considerable ISGMR strength at low energies in nuclei far from the stability line. Similar
effects have been predicted in calculations by Khan et al. [185] and J. Piekarewicz [186] as well.
Although the conclusions of Ref. [185] were later questioned in Refs. [187, 188], the nature of ISGMR
strength in nuclei far from the stability line remains of tremendous current interest.

These measurements have to be performed in the inverse kinematics mode with the concomitant
problem of very low velocities of the recoiling target nuclei at forward-angles essential for identifying
the ISGMR with multipole-decomposition analysis. As stated before, the best experimental probes
for the investigation of the ISGMR are deuterons and α particles. For the excitation energy range
corresponding to the ISGMR, the expected energies of the recoiling particles is in the range of ∼100
keV to ∼2 MeV. In a standard thin target and particle telescope set-up, this energy would necessitate
use of very thin targets (∼100 µg/cm2) and detectors that have practically no dead-layers or entrance
foils. Considering the intensities available for radioactive ion beams, this makes these measurements
practically impossible.

The only reasonable option at present appears to be the use of an active-target timing projection
chamber (AT-TPC). In an active target system, the detector gas employed in the TPC also acts as the
target. Such a system, in principle, can have an angular coverage close to 4π, a low-energy threshold,
and large effective target thickness, alleviating all the problems mentioned above associated with the
inverse kinematics measurements with radioactive ion beams [189].

The first such experiment, meant primarily to establish the technique, was performed at the GANIL
facility in France, using the AT-TPC system MAYA [190]. A 56Ni beam at energy of 50 MeV/nucleon
was incident on MAYA filled with deuterium gas at a pressure of 1050 mbar which is equivalent to a
pure deuterium target of 1.6 mg/cm2-thickness [191]. Even with an effective data taking time of only 15
hours and an average beam intensity of 5×104 pps, it was possible to observe the “bump” corresponding
to the ISGMR+ISGQR in the spectrum of recoil deuterons (see Fig. 26 below). Moreover, the ISGMR
and ISGQR components were distinguished on the basis of MDA, leading to excitation energy values for
these resonances consistent with the known ISGMR and ISGQR energies for the nearby stable nucleus
58Ni (see Table 12).

This experiment, as noted, employed deuterium gas as the target, even though inelastic scattering
of α particles had been established for a long time as the preferred method to excite the ISGMR and
there was a large data set validating the MDA in extracting the ISGMR strength distributions based
on DWBA calculations. Also, break-up of deuteron adds significantly to the “background” in the final
spectra: since the detector had to be optimized for detection of very low deuteron energies, it was
not possible to separate protons from deuterons based on range versus charge measurements. Indeed,
the background shown in Fig. 26 arises primarily from deuteron break-up and was estimated from
direct kinematic measurements for 58Ni at 50 MeV/nucleon performed previously [192]. The choice of
deuterium gas in MAYA had to do with a major practical consideration in that gaseous detectors spark
at high voltages when filled with pure Helium gas. A further difficulty arises because of the need for
a “mask” to absorb the electrons resulting from the high ionization of the gas by the incoming beam
[193]. These aspects are discussed further later in this section.

Although, as an isoscalar particle, the deuteron may be thought of as a probe ideally suited for
investigation of the ISGMR, it has not been used much for the purpose, save for some very early
experiments carried out in France (see, for example, Refs. [194, 195]). Specifically, Willis et al. [195]
had performed (d, d′) measurements on several nuclei using a beam of 54 MeV/nucleon energy and
extracted strength distributions of various giant resonances based on a peak-fit analysis, a method
deemed less reliable than the MDA technique currently in use. As deuteron appeared to be the probe
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Figure 26: 56Ni excitation energy spectrum deduced from the deuteron kinematics and corrected for
geometrical efficiency. The background that was subtracted is shown by the solid line. The inset shows
the background subtracted inelastic data fitted with Gaussian distributions located at 16.5 and 19.5
MeV for the ISGQR and the ISGMR, respectively. Figure adopted from Ref. [191].

of choice for measurements with radioactive ion beams, it was important to validate in known cases the
results obtained in (d, d′) work via direct comparison with results obtained from inelastic α scattering.
This was carried out by Patel et al. [85, 30, 112] at RCNP. In this first investigation of giant resonances
with a deuteron probe at a beam energy amenable to cross sections for excitation of ISGMR required
for radioactive ion beam experiments, they employed a 196-MeV deuteron beam to obtain the now
standard at RCNP “background free” inelastic scattering spectra for 116Sn and 208Pb. They extracted
ISGMR and ISGQR strength functions using the MDA technique (see Fig. 27) and demonstrated that
the ISGMR strength may be extracted reliably with the deuteron probe [85]. The properties of ISGMR
and ISGQR extracted in this work agree very well with the previous values from inelastic α scattering
(see Tables 2 and 3 in Ref. [85]), establishing, in the process, that small-angle deuteron inelastic
scattering can serve as a reliable tool for investigation of ISGMR in nuclei far from stability, using the
rare isotope beams now becoming available at facilities worldwide.

Figure 27: ISGMR and ISGQR strength distributions for 116Sn and 208Pb obtained in the RCNP (d, d′)
work. The solid red lines are Lorentzian fits to the data. Figure from Ref. [85].

As mentioned earlier, there are some practical issues that initially dissuaded experimentalist from
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using (α, α′) in inverse kinematics measurements with radioactive ion beams. A major one was the
sparking of pure Helium gas at high voltages typically used in the AT-TPC systems. This may be
alleviated by quenching the gas with a suitable admixture; however, the concern always was that the
admixed gas (CF4 or CO2 were the possibilities initially considered) would give rise to unacceptably high
backgrounds, especially because of much higher expected cross sections for scattering off 12C. Another
possible complication arose from the high amplification of the electrons emanating from ionization of
the detector gas by the beam particles, with these electrons overwhelming the collecting wires in the
TPC. This problem was solved by use if an electrostatic “mask”, placed just below the beam [196];
this device suppresses the collection of electrons generated by the beam on the central wires. [Such a
“mask” is not required in the (d, d′) measurements because the electron amplification was significantly
smaller.]

In two measurements, performed also at GANIL, the aforementioned problems associated with using
(α, α′) for ISGMR using an AT-TPC device were largely overcome [197, 193, 198]. Helium gas was used
at a pressure of 500 mbar in MAYA, with 5% of CF4 as the quencher. Two different radioactive
ion beams, 56Ni (∼2×104 pps) and 68Ni (∼4×104 pps), both at 50 MeV/nucleon incident energy, were
employed, with data taken on 68Ni also for (d, d′) to obtain a direct comparison between the two probes;
the statistics in the (d, d′) data was much lower than in (α, α′) because of the lower cross section for
(d, d′), as also the experimental conditions of pressure and high voltage employed in the two experiments
[197, 193]. In all cases, a number of narrow peaks are observed in the inelastic scattering spectra sitting
atop, so to speak, a large background.

In 68Ni, a “straight” background was subtracted from the inelastic scattering spectra. Complemen-
tary analyses of fitting a number of peaks to the spectra, and performing MDA, led to identification
of ISGMR strength over Ex=11–23 MeV, with a dominant component at Ex=21.1 MeV; this result is
consistent with the (d, d′) data [197, 193]. A possible indication of a soft isoscalar monopole resonance,
mixed with ISGDR strength, was also found at 12.9±1.0 MeV, in the fitting method in the (α, α′) data.
In case of 56Ni [198], the background was rather large and its shape was approximated by a polynomial
of order 4. A total of 9 peaks were identified in the spectra and used in peak-fitting. The centroid
position of the ISGMR was found to be 19.1±0.5 MeV which compares well with the value 19.5 MeV
obtained in the previous measurement on this nucleus [191]. The authors also reported identification
of the ISGDR strength over Ex=10–35 MeV, albeit with large uncertainties; the observed strength
distribution was consistent with the predictions of the HF-based RPA calculations from Auerbach et
al. [199]. The (α, α′) results on 56Ni are presented in Fig. 28.

All these measurements were plagued by low statistics, high background, low energy resolution,
and limited excitation energy range, rendering accurate and unambiguous determination of the IS-
GMR and ISGDR strengths very difficult and leading to large uncertainties. Their success, and true
importance, lies, nevertheless, in establishing the suitability of the AT-TPC set-up for measuring the
properties of unstable and exotic nuclei available at rare-isotope beam facilities the world over. It is
highly likely that the forthcoming new AT-TPCs, currently under development [189, 200], will provide
significantly higher energy and angular resolutions, making high-quality small-angle inelastic scattering
measurements without these problems feasible.

A more recent measurement on ISGMR strength in the doubly closed shell nucleus 132Sn has been
carried out at the RIKEN RIB Facility in Japan [201]. The newly-developed active-target system, CAT
[202], was employed with deuterium gas. The primary aim of this measurement is to obtain a more
precise value for Kτ , in conjunction with the ISGMR data available on the stable Sn isotopes. Results
from this measurement are awaited. In the event, because of the relatively high intensity of 132Sn beams
available at RIKEN (> 5 x 104 pps), it is anticipated that the ISGMR would be observed with better
statistics than observed so far in other measurements.

A possible, and novel, way of measuring the compression-mode giant resonances in unstable nuclei
using stored beams has recently been introduced [203]. In a demonstration experiment, carried out at
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Figure 28: (a) Excitation-energy spectrum of 56Ni for a 1◦ bin centered around 5.5◦θCM angle is shown.
The thin solid line visible at the bottom of the data represents the background fit. The thick solid line
is the result of the fit to the data with nine Gaussian peaks and a fitted background. The nine Gaussian
peaks are shown separately. (b) Comparison of the experimental ISGDR strength distribution in 56Ni
(solid circles with error bars), obtained from the MDA, is shown together with the prediction of an
HF-RPA calculation (solid line). Figure from Ref. [198].

GSI, Darmsrtadt, a 58Ni beam of 100 MeV/nucleon energy was incident on an He gas-jet target internal
to ESR, the heavy-ion storage ring at GSI. Luminosities of the order of 1025–1026 cm2 sec−1 were achieved
in the measurement, and inelastically scattered α recoils were measured at very forward angles (θc.m. ≤
1.5◦) with ultra-high vacuum compatible detectors. The results indicated a dominant contribution
from the ISGMR, exhausting 79+12

−11% EWSR at an excitation energy consistent with the previously
reported values for ISGMR in this nucleus. This experiment used a stable beam (the luminosity for
an unstable beam would have been too low for any meaningful experiment) and the statistics in the
final spectra were rather low; still, it points to the possibility of such measurements with the advent of
future facilities, such as FAIR, when much higher luminosities might be feasible.

12 Conclusions

The story of the compression modes in nuclei is not a new one. Since the discovery of the ISGMR in the
late 1970’s, interest has been devoted to the incompressibility of finite nuclei, to the extrapolation to
the case of infinite nuclear matter, and to the relationship with the physics of core-collapse supernova
and neutron stars. The status up to the turn of the new millennium has been reviewed in previous
papers and books; so the purpose of the current work is to report on significant results of the past 15-20
years.
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Experimental techniques have significantly improved during this period, and this has led to new
measurements of the ISGMR and ISGDR that have highlighted or disproven new effects. Exclusive
measurements (particle-decay) on the ISGDR are also among the new achievements. At the same time,
there is a new host of fully self-consistent calculations; linear response theory has been fully implemented
both with nonrelativistic and covariant functionals, with a special focus also on the pairing part, which
is relevant for superfluid nuclei. We have discussed these new steps forward in this review, and stressed
the consequences on the extraction of the nuclear incompressibility K∞. While K∞ extracted from the
doubly-magic nuclei like 208Pb has been reported to be around 240 ± 20 MeV, the value associated
with Sn and other open-shell nuclei seems to be lower. This issue of the softness, or fluffiness, of the
open-shell nuclei has not been resolved so far.

Effects of deformation and other nuclear structure effects on the compression modes have also been
analyzed. Whether they can modify our understanding of K∞, remains to be seen, however.

The new frontier is certainly the exploration of exotic, neutron-rich nuclei. In long isotopic chains, as
the difference between the neutron and proton number increases, it is known that protons become more
bound while neutrons occupy higher levels that lie close to the continuum. The large difference between
the Fermi energies of protons and neutrons may produce a decoupling between the well-bound nucleons
in the “core” and the less bound neutrons in the skin or halo. The question to be answered is whether
these two components might behave like two fluids with different incompressibilities. Measurements
with radioactive ion beams have been initiated over the past decade and the results appear to be quite
promising. With development of new experimental equipment and techniques, it is very likely that
important new results will become available in the next few years.
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[60] P. Veselý, J. Toivanen, B. G. Carlsson, J. Dobaczewski, N. Michel, A. Pastore, Phys. Rev. C 86
(2012) 024303.

[61] P. Avogadro, C. A. Bertulani, Phys. Rev. C 88 (2013) 044319.

[62] Y. Abgrall, B. Morand, E. Caurier, B. Grammaticos, Nucl. Phys. A 346 (1980) 431.

[63] C. I. Pardi, P. D. Stevenson, Phys. Rev. C 87 (2013) 014330.
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