25 research outputs found

    Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well

    Get PDF
    Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer. (ET) efficiencies of up to similar to 25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d-4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Frster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to similar to 21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates

    Main outcomes of the Phebus FPT1 uncertainty and sensitivity analysis in the EU-MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project was funded in HORIZON 2020 and is coordinated by CIEMAT (Spain). The project aims at consolidating a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) analysis, focusing on source term figures of merit. The Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), was devoted to apply and test UQ methodologies adopting the internationally recognized PHEBUS FPT1 test. FPT1 was chosen to test UQ methodologies because, even though it is a simplified SA scenario, it was representative of the in-vessel phase of a severe accident initiated by a break in the cold leg of a PWR primary circuit. WP4 served as a platform to identify and discuss the issues encountered in the application of UQ methodol ogies to SA analyses (e.g. discuss the UQ methodology, perform the coupling between the SA codes and the UQ tools, define the results post-processing methods, etc.). The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise with the related specifications and the methodologies used by the partners to perform the UQ exercise. The main outcomes and lessons learned of the analysis are: scripting was in general needed for the SA code and uncertainty tool coupling and to have more flexibility; particular attention should be devoted to the proper choice of the input uncertain parameters; outlier values of figures of merit should be carefully analyzed; the computational time is a key element to perform UQ in SA; the large number of uncertain input parameters may complicate the interpretation of correlation or sensitivity analysis; there is the need for a statistically solid handling of failed calculations

    First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase

    Nuclear fuel rod fragmentation under accidental conditions

    No full text
    This paper deals with fuel rod fragmentation during a core meltdown accident in a Nuclear Power Plant. If water is injected on the degraded core to stop the degradation, embrittled fuel rods may crumble to form a reactor debris bed. The size and the morphology of the debris are two key parameters which determine in particular heat transfer and flow friction in the debris bed and as a consequence its coolability. To address this question, a bibliographic survey is performed with the aim of evaluating the size and the surface area of the fragments resulting from fuel rod fragmentation. On this basis, a model to estimate the mean particle diameter obtained in a reflooded degraded core is proposed. Modelling results show that the particle size distribution is very narrow if we only take into account fuel cracking resulting from normal operating conditions. It leads to minimum mean diameters of 2.5 mm (for fuel particles), 1.35 mm (for cladding particles) and 2 mm (for the mixing of cladding and fuel fragments). These results are obtained with fuel rods of 9.5 mm outer diameter and cladding thickness of 570 μm. The particle size distribution is larger if fine fragmentation of the highly irradiated fuel rods during temperature rise is accounted for. This is illustrated with the computation by the severe accident code ASTEC, codeveloped by IRSN abd GRS, of the size of the debris expected to form in case of reflooding of a French 900 MW reactor core during a core meltdown accident. © 2012 Elsevier B.V. All rights reserved
    corecore