8 research outputs found

    Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters

    Get PDF
    To fully understand the transport mechanism of Na+/H+ exchangers, it is necessary to clearly establish the global rearrangements required to facilitate ion translocation. Currently, two different transport models have been proposed. Some reports have suggested that structural isomerization is achieved through large elevator-like rearrangements similar to those seen in the structurally unrelated sodium-coupled glutamate-transporter homolog GltPh. Others have proposed that only small domain movements are required for ion exchange, and a conventional rocking-bundle model has been proposed instead. Here, to resolve these differences, we report atomic-resolution structures of the same Na+/H+ antiporter (NapA from Thermus thermophilus) in both outward- and inward-facing conformations. These data combined with cross-linking, molecular dynamics simulations and isothermal calorimetry suggest that Na+/H+ antiporters provide alternating access to the ion-binding site by using elevator-like structural transitions

    Aldolase Is Essential for Energy Production and Bridging Adhesin-Actin Cytoskeletal Interactions during Parasite Invasion of Host Cells

    Get PDF
    SummaryApicomplexan parasites rely on actin-based motility to drive host cell invasion. Prior in vitro studies implicated aldolase, a tetrameric glycolytic enzyme, in coupling actin filaments to the parasite's surface adhesin microneme protein 2 (MIC2). Here, we test the essentiality of this interaction in host cell invasion. Based on in vitro studies and homology modeling, we generated a series of mutations in Toxoplasma gondii aldolase (TgALD1) that delineated MIC2 tail domain (MIC2t) binding function from its enzyme activity. We tested these mutants by complementing a conditional knockout of TgALD1. Mutations that affected glycolysis also reduced motility. Mutants only affecting binding to MIC2t had no motility phenotype, but were decreased in their efficiency of host cell invasion. Our studies demonstrate that aldolase is not only required for energy production but is also essential for efficient host cell invasion, based on its ability to bridge adhesin-cytoskeleton interactions in the parasite

    Selective irreversible inhibition of fructose 1,6-bisphosphate aldolase from Trypanosoma brucei.

    No full text
    An irreversible competitive inhibitor hydroxynaphthaldehyde phosphate was synthesized that is highly selective against the glycolytic enzyme fructose 1,6-bisphosphate aldolase from Trypanosoma brucei (causative agent of sleeping sickness). Inhibition involves Schiff base formation by the inhibitor aldehyde with Lys116 followed by reaction of the resultant Schiff base with a second residue. Molecular simulations indicate significantly greater molecular geometries conducive for nucleophilic attack in T. brucei aldolase than the mammalian isozyme and suggest Ser48 as the Schiff base modifying residue

    Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system

    No full text
    Transport assays using purified glucose transporters (GLUTs) have proven to be difficult to implement, hampering deeper mechanistic insights. Here the authors have optimized a transport assay in liposomes that will provide insight to study other membrane transport proteins. Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar K-M,K- but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high K-M for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake

    Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1

    Get PDF
    At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrowspectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors

    Structure and mechanism of the mammalian fructose transporter GLUT5.

    Get PDF
    糖分を細胞内に輸送する膜たんぱく質の立体構造と動きを解明 -肥満やがんの抑制策に役立つ新たな知見-. 京都大学プレスリリース. 2015-10-01.The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a 'gated-pore' transport mechanism in such monosaccharide transporters
    corecore