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Abstract

At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is

accelerating with catastrophic implications for our ability to treat bacterial infections. Globally

we face the prospect of a future when common infections can once again kill. Anti-virulence

approaches that target the capacity of the bacterium to cause disease rather than the growth

or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They

may also reduce the propensity to induce resistance by removing the strong selection pres-

sure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomo-

nas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative

folding of virulence factors and is therefore an attractive target for the development of new

anti-virulence antimicrobials. Using a fragment-based approach we have identified small

molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over

the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-

spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of

PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment

binds on the non-catalytic surface of the protein at a domain interface. This biophysical and

structural data represent a starting point in the development of higher affinity compounds,

which will be assessed for their potential as selective PaDsbA1 inhibitors.
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Introduction

Pseudomonas aeruginosa, an opportunistic and naturally multi-drug resistant Gram-negative

bacterial pathogen, is a frequent causative agent of acute nosocomial infection and chronic

infection in individuals with cystic fibrosis. An ESKAPE pathogen [1] it is feared that P. aerugi-
nosa may eventually become resistant to all currently available antibiotics. Accordingly new

therapeutic agents and strategies to counter infection are urgently sought.

Enzymes that catalyze disulfide bond formation in the periplasm of many Gram-negative

bacteria are essential for virulence [2]. This family of disulfide oxidoreductases, in particular

the primary oxidase DsbA and its partner membrane-protein DsbB, co-operate to catalyze the

oxidative folding of disulfide bond containing proteins, many of which are secreted or cell-sur-

face virulence factors. Deletion of DsbA in pathogenic Gram-negative bacteria prevents lethal

infection in many animal models [3, 4] and has pleiotropic effects on virulence [2]. Deletion of

P. aeruginosa dsbA1 (that encodes PaDsbA1) elicits numerous effects in phenotypic assays

including: inability to process elastase to a mature form [5]; inability to export the Type 3

Secretion System (T3SS), and toxins ExoU [6] or ExoT [6, 7]; impaired ability to survive intra-

cellularly in HeLa cells [6]; loss of twitching motility [6, 8]; and reduced alkaline phosphatase

and lipase activity [8]. Consequently PaDsbA1 is a highly significant control point affecting

the function of many downstream virulence effector molecules and as such is a potential target

for inhibitor development.

We screened an in-house fragment library [9] and identified small molecules that bind to

PaDsbA1. Analysis of their binding mode using protein-detected NMR spectroscopy suggested

that several of these fragments bind PaDsbA1 on the face opposite the active site surface. This

is in contrast to prior work with Escherichia coli DsbA (EcDsbA) where structures of co-com-

plexes revealed fragments that bound in a groove adjacent to the active site [10]. Consistent

with the different binding location of the fragments to the respective proteins, there was very

little overlap between the set of fragments that were identified as binding to PaDsbA1 and frag-

ments that bound to EcDsbA. To characterize the structure of a PaDsbA1—fragment complex

in more detail we utilized both NMR spectroscopy and X-ray crystallography. The structures

of the co-complex that were generated in the two approaches provided complementary infor-

mation and confirmed that the fragment bound on the non-catalytic surface of the protein.

Materials and methods

Protein expression and purification

The P. aeruginosa dsbA1 gene lacking its signal sequence was inserted into a modified pET28a

plasmid (a derivative of pET28a (Novagen)) to generate a construct with a Tobacco Etch Virus

(TEV) protease cleavable N-terminal His6-tag as described [11].

To generate protein for the NMR experiments, PaDsbA1 was expressed and purified essen-

tially as described [11]. Transformed BL21(DE3)-Gold E. coli were grown at 37˚C in Luria

Broth to produce unlabeled protein, or at 28˚C in isotopically enriched M9 minimal media to

produce isotopically labeled protein [10]. Purification involved successive steps of immobilized

metal ion affinity chromatography (IMAC, HisTrap column, GE Healthcare) followed by

hydrophobic interaction chromatography (PhenylHP column, GE Healthcare) prior to His6-

tag removal by TEV protease treatment [12]. A second IMAC step removed uncleaved

PaDsbA1 and TEV protease. PaDsbA1 was oxidized with a either a 50:1 molar excess of oxi-

dized glutathione or by addition of freshly prepared copper phenanthroline to a final concen-

tration of 1.5 mM and purified by size exclusion chromatography as described [10, 13].
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For crystallization experiments a PaDsbA1 variant was employed. This variant was engi-

neered to overcome crystal-packing interactions between His39 of the active site and Glu82sym

of a symmetry related molecule, which impeded access to the active site of PaDsbA1. In the

variant Glu82 was mutated to Ile to enable fragments to access the active site upon soaking

into crystals of PaDsbA1 [13]. PaDsbA1 Glu82Ile was expressed and purified as described [13].

EcDsbA was expressed and purified as described previously [10].

Fragment library screening

Fragment binding was assessed by recording saturation transfer difference (STD) NMR exper-

iments [14] in cocktails containing up to 6 individual fragments. The mixtures contained

PaDsbA1 at a concentration of 5 μM in 50 mM HEPES, 50 mM NaCl, pH 7.4, 10% 2H2O, 1%
2H6-DMSO. Each of the samples contained a unique combination of up to 6 library fragments,

with each fragment at a concentration of ~330 μM. The fragments were combined to minimize

overlap in their 1D 1H-NMR spectra and to allow facile identification of binders within each

cocktail [9]. STD NMR experiments [14] were conducted at 10˚C and 600 MHz on a Bruker

Avance spectrometer equipped with CryoProbe. The magnitude of the signal in STD spectra

was ranked by comparison with the most intense STD signal (Imax) identified across all the

STD spectra for PaDsbA1 as previously described [15]. The STD signal was categorized as

strong where the intensity was�75% Imax, medium where the intensity was�50% Imax and

<75% Imax and weak where the intensity was�25% Imax and<50% Imax. All fragments for

which weak or better signals were observed in the STD-NMR spectra were retained for further

analysis.

Validation of binding to PaDsbA1

Fragments for which binding was observed in the STD NMR screen of the library mixtures

were validated by recording 15N-heteronuclear single quantum coherence (HSQC) spectra of

uniformly 15N labeled PaDsbA1 (100 μM) in 50 mM phosphate buffer, containing 50 mM

NaCl, pH 7.4, 10% 2H2O, 1.7% (v/v) 2H6-DMSO in the absence and presence of each individ-

ual fragment (3.3 mM). 15N-HSQC experiments were recorded at 25˚C and either 600 or 800

MHz on Bruker Avance spectrometers equipped with a CryoProbe. Weighted chemical shift

perturbations (CSP) that were observed upon addition of fragments to PaDsbA1 were calcu-

lated using Eq 1 [16]:

CSP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DdH
2 þ ð0:2� DdNÞ

2

q

ð1Þ

Where ΔδH and ΔδN denote the changes in chemical shift of proton and nitrogen resonances

upon addition of the fragment. Peak assignment for measurement of CSPs was performed

with the program Sparky (Goddard & Kneller, SPARKY 3, University of California, San Fran-

cisco). Equilibrium dissociation constants (KD) were estimated by fitting the magnitude of

CSP observed in 15N-HSQC spectra upon titration of PaDsbA1 with increasing concentrations

of fragment to a one-site binding model (Eq 2), which accounts for ligand depletion using

GraphPad Prism 6.0 (GraphPad, La Jolla, CA)

CSP ¼
CSPmax � ½ðKD þ Pt þ LtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððKD þ Pt þ LtÞ
2
� 4 � Pt � LtÞ

q

�

2� Pt
ð2Þ

Where CSP is the measured CSP at a given fragment concentration; CSPmax is the CSP

observed upon saturation of the protein with fragment, Pt and Lt are the total protein and
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ligand concentrations, respectively at each point in the titration. The experimental KD values

for fragment binding were used to generate ligand efficiency and lipophilic ligand efficiency

metrics as described previously [17]. The ligand efficiencies are expressed in units of kcal

mol-1 divided by the heavy atom count (HAC) for the fragment.

Fragment binding to EcDsbA

Fragment binding to EcDsbA was measured by recording 15N-HSQC spectra for EcDsbA in

the absence and presence of fragments. Experiments were recorded at 25˚C in a buffer system

of 50 mM HEPES, 50 mM NaCl, pH 6.8, 10% 2H2O, 0.5% 2H6-DMSO.

Chemical shift assignment and NMR solution structure of oxidized

PaDsbA1

A sample of uniformly 13C,15N labelled oxidized PaDsbA1 (2 mM) was prepared in 50 mM

phosphate, 50 mM NaCl, pH 7.4, 10% 2H2O. NMR experiments were conducted at 25˚C and

600 or 800 MHz on Bruker Avance spectrometers equipped with a CryoProbe. HN, N, Cα,

Cα-1, Cβ, and Cβ-1 peak lists were generated manually with the program CARA [18] using 2D
15N-HSQC, 3D HNCA, 3D CBCA(CO)NH and 3D HNCACB spectra and used as the input

for automated backbone assignments in UNIO-MATCH [19]. The automated assignments

were checked manually and extended using a 3D 15N-resolved NOESY. Hβ, Hα assignments

were obtained using a 3D HBHA(CBCACO)NH spectrum. HN, N, Cα and Cβ assignments

together with Hβ, Hα were provided as input for UNIO-ATNOS/ASCAN for automated side-

chain assignments using 3D 15N-, 13Cali—and 13Caro—resolved NOESY datasets [20]. Finally,

all assignments were evaluated and extended by manual inspection. In addition, a selectively
13C-enriched sample of PaDsbA1 was prepared and used for stereospecific assignment of pro-

chiral methyl groups of valine and leucine sidechains [21]. Upper distance constraints for

structure calculations were automatically generated from the NOESY data using UNIO-AT-

NOS/CANDID [22, 23] and the structure was solved using the torsion angle dynamics pro-

gram CYANA3.0 [23]. The conformers having the lowest CYANA target function values were

energy minimized with OPALp [24] and their quality assessed using structure validation tools

(http://www.pdb.org/ and http://www.nihserver.mbi.ucla.edu/). Structures were inspected and

analysed with MOLMOL [25]. The coordinates of the solution NMR structure of apo-oxidised

PaDsbA1 were deposited in the Protein Data Bank with accession number 2MBT.

Backbone assignments for PaDsbA1 were obtained using a semi-automated approach. In

this way, 163 of 178 expected backbone amide resonances and 87% of all possible PaDsbA1

proton resonances were successfully assigned. A number of backbone amides and side chain

resonances for PaDsbA1 were not assigned in the spectra including residues Glu87, His88,

Asp89, Val90, His91 and Phe95 within the helical domain. Attempts to improve the number of

observable resonances by altering experimental conditions (temperature and pH) were not

successful. Nonetheless, the extent of assignments gave sufficient coverage of the protein struc-

ture to probe the binding location of the fragments.

Chemical shift assignment for Fragment 1

The proton chemical shifts of Fragment 1 in its free state were assigned using standard 1D and

2D experiments including: 1D 1H, 2D 13C-edited HSQC, HMBC, H2BC and 2D [1H,1H]-

NOESY spectra. The proton chemical shift assignments of Fragment 1 in the bound state were

obtained by recording 1D 1H-NMR spectrum of the complex in the presence of increasing

concentrations of Fragment 1 and tracking the chemical shifts from their assigned resonance

positions in the free state.
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Solubility of Fragment 1 in aqueous NMR buffer

A 2D [1H,1H]-NOESY was recorded for Fragment 1 in aqueous NMR buffer (50 mM phos-

phate, 50 mM NaCl, pH 7.4) at 3.3 mM in the absence of protein. In this spectrum the cross

peaks were found to have the opposite sign to the diagonal, indicating that the fragment was

soluble and did not aggregate under the experimental conditions.

Solution structure of the complex of PaDsbA1 bound to Fragment 1

To generate a model of the solution structure of the PaDsbA1–ligand complex a sample of uni-

formly 13C, 15N labelled oxidized PaDsbA1 (300 μM) was prepared in a buffer of 50 mM phos-

phate, 50 mM NaCl, pH 7.4, 100% 2H2O. Fragment 1 was added to a final concentration of 3.3

mM and the resulting sample contained 1.7% (v/v) 2H6-DMSO. NMR experiments were con-

ducted at 25˚C and 600 MHz or 800 MHz on Bruker Avance spectrometers equipped with a

CryoProbe. Assignments for side chain methyl resonances in the complex were obtained by

recording a series of 13C-HSQC spectra in the presence of increasing concentrations of Frag-

ment 1 to track the CSPs. Distance constraints were derived from intermolecular NOEs

observed in 3D ω1-13C,15N-filtered, ω3-13Cali edited [1H,1H]-NOESY datasets acquired on the

complex.

Structures of the PaDsbA1–Fragment 1 complex were calculated using HADDOCK [26,

27]. The twenty conformers representing the NMR solution structure of apo PaDsbA1 were

used as starting structures in HADDOCK calculations. Conformations of 1 were generated

using Maestro (Schrödinger 2014) and the two lowest energy conformers were selected as

input for the docking calculations. Topology and parameter files for the Fragment 1 were gen-

erated using an automated topology force field builder (ATB) server [28, 29]. Intermolecular

NOEs observed in the experimental data were converted to distance restraints for the structure

calculation as described previously [30]. The NOE distances were used as unambiguous

restraints in the HADDOCK calculations. Due to lower resolution in the indirect 3D

ω1-13C,15N-filtered, ω3-13Cali edited [1H,1H]-NOESY dimension, intermolecular NOE cross

peaks originating from ligand H4, H5 and H6 proton signals could not be resolved in the data.

Therefore a single target distance constraint was set between protein methyl and H4/H5/H6

protons. In addition to these NOE-derived distance restraints, surface exposed residues of

PaDsbA1 that displayed significant CSPs in 13C-HSQC spectra upon addition of Fragment 1

were designated as ambiguous interaction restraints in the HADDOCK calculation. Standard

rigid body HADDOCK docking was used to generate 1000 models of the complex. The 200

models with the best HADDOCK scores were taken for semi-rigid body simulated annealing

in torsion angle space followed by water refinement in Cartesian space. Finally, the top 10

models of the complex with the best HADDOCK scores were retained for analysis and depos-

ited in the Protein Data Bank with accession number 2MBU.

Crystallisation, X-ray data collection and structure determination and

refinement

Our initial efforts to determine structures of fragment complexes using X-ray crystallography

were complicated by our observation that in the wild-type PaDsbA1 crystal structure there is

an unfavourable crystal-packing interaction, which appears to preclude access to the active site

of the protein. Consequently, for the purpose of all crystal soaking experiments, we used a pro-

tein variant PaDsbA1 E82I, which contains a single amino acid substitution (Glu 82 to Ile)

introduced to disrupt this interaction [13]. Importantly PaDsbA1 E82I displays unaltered in
vitro activity, redox character and only minor structural differences relative to wild-type
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PaDsbA1. PaDsbA1 E82I was crystallized as described previously [13]. For fragment soaks,

PaDsbA1 E82I crystals were immersed for several minutes in solutions of single fragments at a

final concentration of 20 mM or 50 mM, and a maximum DMSO concentration of 10% (v/v),

immediately prior to cryoprotection.

Crystals were cryocooled in liquid nitrogen using mother liquor and 20% glycerol as a cryo-

protectant. X-ray data were collected at 100 K at the Australian Synchrotron on the microfocus

beamline MX2 using an ADSC Quantum 315r detector. Data were collected at a wavelength of

0.95370 Å over a total angular rotation of 180˚ using 1˚ phi slices and an exposure time of 1 s.

The data were indexed and integrated with iMosflm [31], and scaled using POINTLESS and

AIMLESS [32] within the CCP4 suite.

All phasing and model refinement procedures were implemented within the Phenix soft-

ware suite. The data were phased using molecular replacement methods with AutoMR [33]

using PaDsbA1 (PDB ID, 4ZL7) as a search model. The resulting model was subject to iterative

rounds of refinement (phenix.refine [34])—including initially refinement using TLS groups

and of hydrogens using a riding model—and model building using COOT [35]. In the final

stages of refinement non-water atoms were refined with anisotropic atomic displacement

parameters. Coordinates and restraints for Fragment 1 as well as bound ligands derived from

the cryoprotectant (glycerol), and crystallisation condition (MES) were generated using

elBOW [36] and the quality of the final model was assessed with Molprobity [37] throughout

the refinement process. The R-factor was calculated according to Eq 3:

Rfactor ¼
X

h
k Fobsjh � jFcalcjhj=

X

h
jFobsjh ð3Þ

Where h defines the unique reflectons.

In the final model there are continuous regions of density near residues 69–72 (helix 2) and

180-181(helix 7). Efforts to model and refine sensible ligands (e.g. components of the crystalli-

sation condition or soak) were unsuccessful. These regions were modelled as waters. The final

refined structure has been deposited in the Protein Data Bank (PDB ID 5DCH). All structural

figures were generated using Pymol (PyMOL Molecular Graphics System, version 1.6 Schro-

dinger, LLC, http://pymol.org) and Adobe Illustrator.

Results

Fragment library screening

PaDsbA1 was screened against a library of 1137 fragments [9] by ligand-detected STD NMR

experiments (Fig 1A). A total of 215 fragments, (~19% of the library) were classified as hits in

this screen, whereby at least one well resolved resonance in the NMR spectrum of the fragment

gave an STD above the detection threshold. These fragments were subsequently validated

using protein-detected NMR analysis of binding.

Hit validation and assessment of specificity for PaDsbA1

Of the STD hits, a total of 45 fragments caused a weighted chemical shift perturbation (CSP) of

at least 0.01 ppm for one or more peaks in the 15N-HSQC spectrum of PaDsbA1 at a fragment

concentration of 3.3 mM (an example of which is illustrated in Fig 1B). This represents 21% of

the STD hits and 4.0% of the overall fragment library. 15N-enriched PaDsbA1 was titrated with

each of these 45 fragments to generate a concentration-dependent series of CSP in 15N-HSQC

spectra and, where possible, the CSP data were used to estimate the KD for the fragment (Fig

2). Representative HSQC spectra and curve fitting for titration experiments are shown for
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Fragment 1 in Fig 1C and 1D. KD values were obtained for 16 fragments by this method and 8

of these gave fitted KD values of less than 5 mM (Fig 2).

To assess the binding selectivity of the 8 fragments that bound to PaDsbA1 with the highest

affinity, we used the same binding screen and validation protocol outlined above (ligand-

detected STD NMR followed by protein-detected 15N-HSQC NMR), to assess their binding to

EcDsbA. These data indicated that of the 8 PaDsbA1-binding fragments, only Fragment 6 also

binds to EcDsbA, and that the binding of 6 to EcDsbA was too weak (> ~5 mM) to allow esti-

mation of its KD by NMR. We have previously observed that 2-aminothiazoles such as Frag-

ment 6 can be promiscuous binders in our NMR-detected fragment screens [38]. These

findings suggest that the fragments that bind to PaDsbA1 with the highest affinity exhibit

some selectivity for PaDsbA1 over EcDsbA.

Identification of the fragment-binding site of PaDsbA1

As with other DsbA enzymes, the catalytic surface of PaDsbA1 is composed of a CPHC active

site, and three neighbouring surface loops that determine redox character as well as the nature

Fig 1. Screening and validation of the fragment library. (A) The fragment library was screened using

ligand-detected 1H STD NMR. Pictured is an overlay of the aromatic 1H region of an STD spectrum (bottom

spectrum, blue), plus the 1D reference spectra of fragments present in the cocktail (red, green, magenta,

orange, cyan and black). In this instance, of the fragments present in the cocktail, only Fragment 1 whose

spectrum is shown in red binds to PaDsbA1. STD fragment hits were validated by recording HSQC NMR

using 15N labeled PaDsbA1. (B) Pictured is an overlay of the 15N-HSQC spectra of PaDsbA1 in the absence

(blue) and presence (red) of Fragment 1, which reveals perturbation of a subset of residues. (C) The KD for

each fragment was estimated from measurement of chemical shift perturbations in 15N-HSQC spectra of

PaDsbA1 as a function of increasing fragment concentration. Shown is an overlay of one region of the
15N-HSQC spectra of PaDsbA1 in the absence (blue) and then increasing concentrations of Fragment 1 (0.2–

3.3 mM). (D) The concentrations dependent chemical shift perturbation data were fitted to a one-site binding

model to estimate a KD for the compound.

https://doi.org/10.1371/journal.pone.0173436.g001
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of interactions with substrates and the partner protein DsbB [39, 40]. Titration with the most

tightly binding fragments (1–3) resulted in the largest CSPs in HSQC spectra being observed

for a cluster of residues that were not located on this active site surface but at the domain inter-

face on the non-catalytic face of the protein, suggesting that this was the binding site for the

fragments on PaDsbA1 (Fig 3). This is in contrast to our previous study with EcDsbA [10],

where the fragments that we identified were found to bind in a hydrophobic pocket adjacent

to the catalytic site.

Structural characterization of the PaDsbA1–Fragment 1 complex

To investigate the location of fragment binding to PaDsbA1, we determined the structure of

PaDsbA1 in complex with Fragment 1. Our initial efforts to soak or co-crystallize PaDsbA1

Fig 2. Validated fragment hits with KD values < 5 mM.

https://doi.org/10.1371/journal.pone.0173436.g002
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with fragments proved unsuccessful, which led us to investigate the structure of the complex

using NMR spectroscopy. Subsequently, using a single-point mutation of the protein [13] it

was possible to generate crystals of the PaDsbA1–Fragment 1 complex and consequently,

models of the co-complex structure were obtained using both NMR spectroscopy and X-ray

crystallography.

For the NMR structure of the complex, we first determined the solution structure of oxi-

dized PaDsbA1 using standard triple resonance NMR methods [41]. The 20 NMR conformers

with the lowest energy and least residual violations of the experimental data were chosen to

represent the solution structure of apo-PaDsbA1. This ensemble is a high precision structure

with RMSD values for backbone and heavy atoms in the well-defined regions of the structure

(Asp4–Gly85, Val94–His99 and Leu105–Lys192) of 0.74 ± 0.14 Å and 1.12 ± 0.14 Å, respec-

tively. Statistics for the PaDsbA1 NMR structures are summarized in Table 1. Residues which

fall into disallowed Ramachandran regions include the unassigned residues Asp4, His39, Ile70,

His88, Val90 and His91 and residues Lys104 and Thr151, which are present in loop regions.

Fig 3. Chemical shift perturbations are observed for residues on both the catalytic and non-catalytic

face of oxidised PaDsbA1. Chemical shift perturbations observed in HSQC spectra of PaDsbA1 in the

presence of 3.3 mM (A) Fragment 1, (B) Fragment 2 and (C) Fragment 3. CSP are plotted versus residue

number. (D-F) In each case the chemical shift perturbations have been mapped onto the crystal structure of

PaDsbA1 (PDB code: 3H93): minimum = 0.01 ppm (white) and maximum = 0.1 ppm (red). Shown are views

of the catalytic face of PaDsbA1 (left) and the non-catalytic face (right). In each case there is a continuous

cluster of chemical shift perturbations observed on the non-catalytic face. The unassigned active site histidine

residue (His39) is highlighted in yellow.

https://doi.org/10.1371/journal.pone.0173436.g003
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The solution structure of PaDsbA1 is highly similar to that of the crystal structure of wild-type

PaDsbA1 (PDB ID 3H93); the NMR conformers have a backbone RMSD of 1.72 ± 0.18 Å rela-

tive to the crystal structure of wild-type PaDsbA1 for the region Asp4–Gly85, Val94–His99

and Leu105–Lys192. The ensemble of 20 NMR conformers was used as a starting point for the

structure determination of the complex.

Intermolecular distance constraints derived from a 3D ω1-13C,15N-filtered, ω3-13Cali edited

[1H,1H]-NOESY spectrum were used to generate a model of the solution structure of the

PaDsbA1—Fragment 1 complex. NOEs were observed involving all non-exchangeable protons

of Fragment 1 with the exception of the single proton on the triazole ring, which was broad-

ened beyond detection under the experimental conditions. A total of 23 NOEs were observed

between methyl resonances of protein residues Val61, Leu63, Leu79, Ala141 and Leu144 and

ligand resonances of Fragment 1. CSPs of> 0.05 ppm in [13C, 1H]-HSQC were observed for

most of the residues showing intermolecular NOEs (Leu79, Val61, Leu63 and Leu144), as well

as for the adjacent buried residues Leu32 and Val157, plus the partially solvent exposed residue

Table 1. Structural statistics for the bundle of 20 energy-minimized NMR conformers of apo oxidised

PaDsbA1 (3–192).

Quantity Valuea

Completeness of proton assignment 86.77%

NOE upper distance limits 3296

intraresidual 714

short-range 894

medium-range 777

long-range 911

Residual target function value [Å2] 2.4 ± 0.1

Residual NOE violations

number� 0.1 Å 25.9 ± 4.6

maximum [Å] 0.02 ± 0.0

Residual dihedral angle violations

number� 2.5˚ 0.4 ± 0.7

maximum [˚] 2.2 ± 0.9

AMBER energies [kcal/mol]

total -6826 ± 111

van der Waals -679 ± 19

electrostatic -7568 ± 101

RMSD from mean coordinatesb [Å]

backbone (4–85, 94–99, 105–192) 0.74 ± 0.14

all heavy atoms (4–85, 94–99, 105–192) 1.12 ± 0.14

Ramachandran plot statisticsc

most favoured regions [%] 82.2

additional allowed regions [%] 16.7

generously allowed regions [%] 0.6

disallowed regions [%] 0.5

aExcept for the top entries (those relating to NOEs), average values and standard deviations for the 20

energy-minimized conformers are given. The top six entries represent the output generated in the final cycle

of the UNIO-CYANA3.0 calculation.
bThe numbers in parentheses indicate the residues for which the RMSD was calculated.
cAs determined by PROCHECK.

https://doi.org/10.1371/journal.pone.0173436.t001
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Val30 (Fig 4). These data were used to generate distance restraints for the HADDOCK calcula-

tion. In all, 200 HADDOCK models of the protein:ligand complex were generated, and in each

case Fragment 1 was found to adopt a similar orientation (Fig 5A). The large variation in the

position of the amino-triazole ring position relative to the average structure of Fragment 1 in

the model is most likely due to the lack of intermolecular NOE distance constraints to this por-

tion of the molecule. Of the 200 conformers, we took the 10 best conformers with the lowest

HADDOCK scores generated from weighted summations of energies. A representative model

structure of the lowest energy conformer of the complex is shown in Fig 5B.

For all crystallization experiments we used the E82I variant of PaDsbA1. Crystal soaking

experiments yielded a 1.45 Å resolution co-crystal structure of PaDsbA1-E82I in complex with

Fragment 1 with an Rfactor/Rfree of 13.6%/16.3% respectively. The quality of the electron density

maps and Molprobity values indicate that the final structure is of very high quality. Details of

data collection, solution methods and additional quality indicators are given in Tables 2 and 3.

Fragment 1 binds to the non-catalytic face of PaDsbA1 at the domain

interface

In both the X-ray structure and the HADDOCK models of the complex, Fragment 1 is posi-

tioned at an interface between the thioredoxin (TRX) and helical domains of PaDsbA1, on the

non-catalytic face of the enzyme (Fig 6). The groove in which Fragment 1 binds to PaDsbA1 is

extensive and straddles the boundary between the TRX and helical domains. An analogous

surface in the structure of EcDsbA was described as “Groove 2” [42]. Fragment 1 bound to

PaDsbA1 at the end of this groove adjacent to helix H6 (Fig 7A). The amino-triazole ring of

Fragment 1 binds into a pocket that is formed by residues Tyr148, Ser22 and Glu28, where it is

sandwiched between the surface formed by helix H6, the B2 sheet and B1-B2 connecting loop

(Fig 7A) The ortho-methylbenzene group is positioned close to the interface of H6 and H2 of

the helical domain. Residues from both the helical and TRX domains contribute to the binding

of Fragment 1; H6 straddles the TRX and helical domains of PaDsbA1 and residues from each

domain make contacts with the fragment.

The NMR and crystal structures provide complementary information about the molecular

interactions that dictate Fragment 1 binding to PaDsbA1. In the NMR structure, there are no

NOE-based constraints for the 5-membered triazole ring, which has only one non-exchange-

able proton. In the crystal structure however, the majority of observable contacts between

PaDsbA1 and Fragment 1 are to this amino-triazole group for which the electron density map

is sharply resolved (Fig 7B). Specifically Fragment 1 is coordinated by two side-chain mediated

hydrogen bonds between the amino substituent of the triazole ring and residues Glu28 (2.99

Å) and Tyr148 (2.92 Å). Additional stabilization is provided by a π-stacking interaction

between the triazole ring and amide bond of Val21 –Ser22 (3.55 Å from centroid to Ser22 Cα).

Electron density for the ortho-methylbenzene group is less well defined in the X-ray struc-

ture (Fig 7B) presumably the result of a degree of flexibility. It is positioned within the vicinity

of Leu63, Leu79, Gln137, Ala141, Lys140 and Leu144 (Fig 7A and 7C), which is well supported

by NMR data (Fig 5B). The crystal structure of PaDsbA1 undergoes very minor conforma-

tional changes upon fragment binding. Notably the position of Tyr148 –which makes the key

hydrogen bonding interaction with Fragment 1 –is unaltered between the apo and ligand

bound structures. There are a number of minor changes however; the side chain of Gln137

flips in the liganded structure, forming a new contact to a water molecule. Ser22 OH adopts

two alternate side chain orientations in the Fragment 1 bound structure. Finally, the main

chain atoms of Val61 deviate between the two structures (regardless of how a superposition is

performed), although the reasons for this are unclear.
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Discussion

Our fragment screen of the oxidoreductase enzyme PaDsbA1 identified 8 fragments with mea-

surable KD values of< 5 mM. The ligand efficiencies (LEs) of these fragments range from

Fig 4. Assignment of methyl resonances of oxidized PaDsbA1 in the presence of Fragment 1. (A)

Overlay of the methyl region of the 13C-HSQC spectra of PaDsbA1 in the absence (blue) and presence (red)

of Fragment 1. A subset of residues undergoes significant chemical shift perturbations. (B) Overlay of the
13C-HSQC spectra of PaDsbA1 in the absence (blue) and presence increasing concentrations of Fragment 1

(0.2–3.3 mM). Selected methyl resonance assignments are shown. The resonances for Leu63 and Leu144

undergo the largest chemical shift perturbations as indicated by arrows.

https://doi.org/10.1371/journal.pone.0173436.g004

Fig 5. NMR data driven-HADDOCK docking model of PaDsbA—Fragment 1 complex. (A) Overlay of the

two hundred best scoring HADDOCK model structures after water refinement showing the conformation of

Fragment 1 in the complex. (B) The lowest energy conformer from the HADDOCK calculation is shown as a

representative model of the PaDsbA—Fragment 1 complex. PaDsbA1 is shown in cartoon. Methyl containing

residues for which intermolecular NOEs were detected, are shown in blue-white sticks. Val19 and Val21

methyls are present in close proximity of the Fragment 1 binding site (shown in magenta sticks), however no

NOE cross peaks were observed from these methyls to ligand protons.

https://doi.org/10.1371/journal.pone.0173436.g005
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0.19–0.37 kcal mol-1 HAC-1 and lipophilic ligand efficiencies (LLEs) range from 0.06–0.44 kcal

mol-1 HAC-1 [17]. Together, the hit rate observed in the screen, the binding efficiency of the

ligands identified and the availability of a structure of Fragment 1 in complex with PaDsbA1

suggest that this pocket may be amenable to the development of more potent binders.

Table 2. X-ray crystal structure of PaDsbA1 and Fragment 1: Data collection and processing.

Wavelength (Å) 0.95370

Resolution range (Å) 35.10–1.45 (1.47–1.45)

Space group P 21

Unit cell (Å, ˚) 35.47 63.10 41.87 90 98.31 90

Rmerge 0.077 (1.009)

Total number of observations 232,922 (10,234)

Total number unique 31,349 (14,514)

Mean((I)/sd(I)) 14.1 (2.3)

Mn(I) half-set correlation CC(1/2) 0.998 (0.808)

Completeness (%) 96.4 (92.1)

Multiplicity 7.4 (7.1)

Values in parentheses refer to the highest resolution shell.

https://doi.org/10.1371/journal.pone.0173436.t002

Table 3. X-ray crystal structure of PaDsbA1 and Fragment 1: Refinement and model quality.

Refinement

R-factor (%) 13.59 (19.45)

R-free§ (%) 16.32 (24.44)

Number of atoms 3275

macromolecules 1,518

ligands 51

water 141

Protein residues 187

R.M.S.D from ideal geometry

RMS(bonds) (Å) 0.008

RMS(angles) (˚) 1.15

Molprobity analysis

Ramachandran favored (%) 98.5

Ramachandran outliers (%) 0

Clashscore* 3.2 (97th percentile; N = 479, 1.447Å ± 0.25Å)

Molprobity score** 1.1 (98th percentile; N = 3441, 1.447Å ± 0.25Å)

Average B-factor (Å2) 19.20

macromolecules 17.50

solvent 32.50

Values in parentheses refer to the highest resolution shell
§ Rfree calculated over 5.0% of total reflections excluded from refinement

* Clashscore: 100th percentile is the best among structures of comparable resolution; 0th percentile is the

worst. For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006

** MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score,

normalized to be on the same scale as X-ray resolution

https://doi.org/10.1371/journal.pone.0173436.t003
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Fig 6. NMR data driven HADDOCK docking model and X-ray crystal structure of PaDsbA1–Fragment 1

complex. The representative HADDOCK model and the crystal structure are shown in cartoon representation

coloured green and magenta, respectively. The binding mode of Fragment 1 (shown as sticks) is similar in

both models.

https://doi.org/10.1371/journal.pone.0173436.g006
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The three most potent hits produce CSP patterns in HSQC spectra that are consistent with

an unexpected mode of binding at the non-catalytic face of PaDsbA1. This was verified for

Fragment 1 in both solution-NMR and X-ray crystal structures. We recently described a classi-

fication of DsbA proteins that broadly divides the enzyme family into two classes on the basis

of β-sheet topology in the TRX domain [43]. These classes (DsbA-I and DsbA-II) can be fur-

ther subdivided by surface features, specifically the conformation and composition of three

loop regions on the active site surface of the enzyme and electrostatic features [43]. PaDsbA1 is

a DsbA-I protein. DsbA-I proteins have a groove that runs along their non-catalytic face

between the TRX and inserted helical domain. In this study, fragments bind within this groove

on the non-catalytic face. To our knowledge this is a previously unreported site of specific

small molecule binding to DsbA proteins, although small molecules such as glycerol and

DMSO (present in the crystallization condition or introduced via soaking) have been resolved

in the equivalent groove of other DsbA-I structures [3, 44]. The non-catalytic face of DsbA-I

enzymes has also been identified previously as a protein interaction surface. In Acinetobacter
baumannii DsbA (AbDsbA) the groove can accommodate an elongated peptide chain as deter-

mined by a crystal structure of AbDsbA in complex with E. coli Elongation Factor EF-Tu [45].

Whilst the physiological relevance of this particular protein-protein interaction remains to be

determined, it suggests that the groove may serve as an additional protein interaction site in at

least DsbA-I type enzymes.

Overall, our success rate in obtaining structural information about fragment-protein inter-

actions was low. Of 45 validated hits from a screen of 1137 fragments, we obtained a crystal

structure for a single fragment-protein complex. This result reflects the inherent difficulties of

forming liganded crystal structures at the start of a fragment campaign when hit compounds

are frequently of low affinity (Fig 2). The challenge is compounded further when targeting the

relatively flat and featureless surfaces that often typify protein:protein interactions [46] such as

that of PaDsbA1. Even against more classically druggable targets with active site pockets and

cavities, translating well-validated hits into high-resolution structural information is not

always straightforward. Targeting three enzymes, Hubbard et al reported that co-crystal struc-

tures were obtained for 10, 17 and 81% respectively of “class I” NMR fragment hits against

each target, where a class I hit was defined as a fragment that bound competitively to the target

in each of three separate ligand-detected NMR experiments [47]. Similarly, targeting

Fig 7. X-ray crystal structure of PaDsbA1-Fragment 1 complex. The structure of PaDsbA1 in complex with Fragment 1 was solved by

X-ray crystallography. (A) Residues from both the helical (H2, H6) and TRX (B2, B1-B2, H6) domains contribute to the binding of

Fragment 1. Selected side chains, which make contact with Fragment 1 are shown as sticks, and hydrogen bonds identified in the

complex as dashed black lines. (B) 2Fo-Fc (blue) electron density map for Fragment 1, was generated from a simulated annealing omit

map and is shown contoured at 1.0 σ. The maps are shown within a 2 Å radius of each atom of Fragment 1. (C) Stereo representation

highlighting the subset of side chain residues involved in either hydrogen bond or hydrophobic contacts with Fragment 1 in the complex.

Hydrogen bonds are shown as black dashed lines.

https://doi.org/10.1371/journal.pone.0173436.g007
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Mycobacterium tuberculosis pantothenate synthetase, Silvestre et al., utilized a multi-step bio-

physical investigation and validation of hits (thermal shift, Water LOGSY NMR, STD NMR

and ITC) and yet obtained crystal structures for less than half (47%) of the validated hits, Nota-

bly, all of these hits were those for which ITC gave KD values of 5 mM or less, supporting the

idea that affinity and the resultant binding site occupancy at early stages of ligand-structure

determination is important [48].

The inability to obtain fragment-target structural information—particularly high-resolu-

tion crystal structure information—is a significant bottleneck in fragment-based drug design

(FBDD) campaigns. Yet structural information is very important. A review of 145 FBDD pro-

grams found that 62% used structural information (10% NMR, 52% X-ray) to select the best

fragments for elaboration and 77% of fragment-derived clinical candidates involved structure

based optimizations [49]. Some campaigns have been able to elaborate fragments entirely in

the absence of structural information. Inhibitors of FtsZ (a protein involved in bacterial cell

division) were progressed from initial hits to highly potent drug like molecules solely using in
vitro antibacterial assays and bacterial cell morphology analysis to guide medicinal chemistry

[50]. However, this is an unusual case in that the starting ~110 Da fragment already displayed

in vitro antibacterial activity. A more generic approach allowing elaboration without an

explicit requirement for structural characterization is the “off-rate screening” approach using

surface plasmon resonance reported by the FBDD group at Vernalis [51]. NMR guided models

provide an alternative, if lower-throughput, option for structural information, although a

number of approaches to improve the speed of structure determination of similar complexes

have been reported [30, 52, 53]. In the case of PaDsbA1—Fragment 1, an accurate model of

the complex was derived from sparse NOE data. Protein—fragment structure solution by

NMR is thus a valuable adjunct to X-ray crystallography in the FBDD process, and in cases

where crystallography is intractable can serve as a practical alternative to X-ray methods.

It remains to be seen whether targeting the non-catalytic face of PaDsbA1 is a viable means

of inhibiting PaDsbA1 function. PaDsbA1 undergoes very minor structural changes upon

Fragment 1 binding. Interestingly, binding of AbDsbA to E.coli EF-Tu (which engages

AbDsbA along an equivalent groove on the non-catalytic face), significantly reduced AbDsbA

enzymatic activity in an in vitro model-peptide folding assay [45] suggesting a potential for

inhibition by targeting this face of this protein. However, Fragment 1 was found to have no

inhibitory activity in the same in vitro model-peptide folding assay even at final concentrations

of 10 mM. Development of allosteric inhibitors from fragment campaigns is not without pre-

cedent [54]. Whether a more potent analogue may have inhibitory effects via allosteric inhibi-

tion remains to be investigated.

Finally, we note that two DsbA enzymes, PaDsbA1 and PaDsbA2 have been identified in P.

aeruginosa. The second enzyme PaDsbA2 is a highly oxidizing DsbA of undetermined func-

tion [55]. PaDsbA1 is the primary oxidase in vivo, and cannot be complemented by PaDsbA2

suggesting that the two proteins have different substrate specificities. Furthermore, PaDsbA2

appears to be expressed only under specific, as yet unidentified, conditions suggesting a highly

specific role for PaDsbA2 in P. aeruginosa physiology. In light of the role of PaDsbA1 as the

primary disulfide donor in P. aeruginosa, and as all in vivo and animal model work to date has

focused on PaDsbA1, we have focused on the identification of PaDsbA1 inhibitors which are

anticipated to disrupt normal P. aeruginosa oxidative folding activity.
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