4,509 research outputs found
Optimization of Network Robustness to Waves of Targeted and Random Attack
We study the robustness of complex networks to multiple waves of simultaneous
(i) targeted attacks in which the highest degree nodes are removed and (ii)
random attacks (or failures) in which fractions and respectively of
the nodes are removed until the network collapses. We find that the network
design which optimizes network robustness has a bimodal degree distribution,
with a fraction of the nodes having degree k_2= (\kav - 1 +r)/r and the
remainder of the nodes having degree , where \kav is the average
degree of all the nodes. We find that the optimal value of is of the order
of for
Optimization of Robustness of Complex Networks
Networks with a given degree distribution may be very resilient to one type
of failure or attack but not to another. The goal of this work is to determine
network design guidelines which maximize the robustness of networks to both
random failure and intentional attack while keeping the cost of the network
(which we take to be the average number of links per node) constant. We find
optimal parameters for: (i) scale free networks having degree distributions
with a single power-law regime, (ii) networks having degree distributions with
two power-law regimes, and (iii) networks described by degree distributions
containing two peaks. Of these various kinds of distributions we find that the
optimal network design is one in which all but one of the nodes have the same
degree, (close to the average number of links per node), and one node is
of very large degree, , where is the number of nodes in
the network.Comment: Accepted for publication in European Physical Journal
Can billiard eigenstates be approximated by superpositions of plane waves?
The plane wave decomposition method (PWDM) is one of the most popular
strategies for numerical solution of the quantum billiard problem. The method
is based on the assumption that each eigenstate in a billiard can be
approximated by a superposition of plane waves at a given energy. By the
classical results on the theory of differential operators this can indeed be
justified for billiards in convex domains. On the contrary, in the present work
we demonstrate that eigenstates of non-convex billiards, in general, cannot be
approximated by any solution of the Helmholtz equation regular everywhere in
(in particular, by linear combinations of a finite number of plane waves
having the same energy). From this we infer that PWDM cannot be applied to
billiards in non-convex domains. Furthermore, it follows from our results that
unlike the properties of integrable billiards, where each eigenstate can be
extended into the billiard exterior as a regular solution of the Helmholtz
equation, the eigenstates of non-convex billiards, in general, do not admit
such an extension.Comment: 23 pages, 5 figure
Wearable activity technology and action-planning (WATAAP) to promote physical activity in cancer survivors: Randomised controlled trial protocol
Background/Objective: Colorectal and gynecologic cancer survivors are at cardiovascular risk due to comorbidities and sedentary behaviour, warranting a feasible intervention to increase physical activity. The Health Action Process Approach (HAPA) is a promising theoretical frame-work for health behaviour change, and wearable physical activity trackers offer a novel means of self-monitoring physical activity for cancer survivors.
Method: Sixty-eight survivors of colorectal and gynecologic cancer will be randomised into 12- week intervention and control groups. Intervention group participants will receive: a Fitbit AltaTM to monitor physical activity, HAPA-based group sessions, booklet, and support phone-call. Participants in the control group will only receive the HAPA-based booklet. Physical activity (using accelerometers), blood pressure, BMI, and HAPA constructs will be assessed at baseline, 12-weeks (post-intervention) and 24-weeks (follow-up). Data analysis will use the Group x Time interaction from a General Linear Mixed Model analysis.
Conclusions: Physical activity interventions that are acceptable and have robust theoretical underpinnings show promise for improving the health of cancer survivors
Radiative Tau Lepton Pair Production as a Probe of Anomalous Electromagnetic Couplings of the Tau
We calculate the squared matrix element for the process e+ e- --> tau+ tau-
gamma allowing for anomalous magnetic and electric dipole moments at the tau
tau gamma vertex. No interferences are neglected and no approximations of light
fermion masses are made. We show that anomalous moments affect not only the
cross section, but also the shape of the photon energy and angular
distributions. We also demonstrate that in the case of the anomalous magnetic
dipole moment, the contribution from interference involving Standard Model and
anomalous amplitudes is significant compared to the contribution from anomalous
amplitudes alone. A program to perform the calculation is available and it may
be employed as a Monte Carlo generator.Comment: 14 pages, 8 figures submitted to Nuclear Physics
Catalytic Kinetic Resolution of a Dynamic Racemate: Highly Stereoselective Ī²-Lactone Formation by N-Heterocyclic Carbene Catalysis
This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of Ī±-substituted-Ī²-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base
Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment
If the Standard Model is correct, and fundamental fermions exist only in the
three generations, then the CKM matrix should be unitary. However, there
remains a question over a deviation from unitarity from the value of the
neutron lifetime. We discuss a simple space-based experiment that, at an orbit
height of 500 km above Earth, would measure the kinetic-energy, solid-angle,
flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at
this altitude). The difference between the energy spectrum of neutrons that
come up from the Earth's atmosphere and that of the undecayed neutrons that
return back down to the Earth would yield a measurement of the neutron
lifetime. This measurement would be free of the systematics of laboratory
experiments. A package of mass kg could provide a 10^{-3} precision in
two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio
The production and persistence of Ī£RONO2 in the Mexico City plume
Alkyl and multifunctional nitrates (RONO2, Ī£ANs) have been observed to be a significant fraction of NOy in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Ī£ANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role Ī£ANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO2, total peroxy nitrates (Ī£PNs), HNO3 and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. Ī£ANs were observed to be 10ā20% of NOy in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of Ī£ANs with odd-oxygen (Ox) indicate a stronger role for Ī£ANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms, (2) Ī£AN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) Ī£ANs play a significant role in the export of NOy from Mexico City to the Gulf Region
Dopamine D_2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive 4 nicotinic receptors via a cholinergic-dependent mechanism
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing Ī±4 and Ī²2 subunits (Ī±4Ī²2*) functionally interact with G-protein-coupled dopamine (DA) D_2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering 4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D_2-receptor agonist. When challenged with the D_(2)R agonist, quinpirole (0.5ā10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinsonās disease, and the data suggest that a D_(2)RāĪ±4*-nAChR functional interaction regulates cholinergic interneuron activity.āZhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive Ī±4 nicotinic receptors via a cholinergic-dependent mechanism
Gaseous elemental mercury concentrations along the northern gulf of mexico using passive air sampling, with a comparison to active sampling
Ā© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Mercury is a toxic element that is dispersed globally through the atmosphere. Accurately measuring airborne mercury concentrations aids understanding of the pollutantās sources, distribution, cycling, and trends. We deployed MerPASĀ® passive air samplers (PAS) for ~4 weeks during each season, from spring 2019 to winter 2020, to determine gaseous elemental mercury (GEM) levels at six locations along the northern Gulf of Mexico, where the pollutant is of particular concern due to high mercury wet deposition rates and high concentrations in local seafood. The objective was to (1) evaluate spatial and seasonal trends along the Mississippi and Alabama coast, and (2) compare active and passive sampling methods for GEM at Grand Bay National Estuarine Research Reserve, an Atmospheric Mercury Network site. We observed higher GEM levels (p \u3c 0.05) in the winter (1.53 Ā± 0.03 ng mā3) compared to other seasons at all sites; with the general pattern being: winter \u3e spring \u3e summer ā fall. Average GEM levels (all deployment combined) were highest at Bay St. Louis (1.36 Ā± 0.05 ng mā3), the western-most site nearest the New Orleans metropolitan area, and lowest at Cedar Point (1.07 Ā± 0.09 ng mā3), a coastal marsh with extensive vegetation that can uptake GEM. The MerPAS units compared reasonably well with the established active monitoring system, but gave slightly lower concentrations, except in the winter when the two methods were statistically similar. Both the passive and active sampling methods showed the same seasonal trends and the difference between them for each season was \u3c15%, acceptable for evaluating larger spatial and temporal trends. Overall, this work demonstrates that PASs can provide insight into GEM levels and the factors affecting them along coastal regions
- ā¦