71 research outputs found

    Predicting learning and achievement using GABA and glutamate concentrations in human development

    Get PDF
    Previous research has highlighted the role of glutamate and gamma-aminobutyric acid (GABA) in learning and plasticity. What is currently unknown is how this knowledge translates to real-life complex cognitive abilities that emerge slowly and how the link between these neurotransmitters and human learning and plasticity is shaped by development. While some have suggested a generic role of glutamate and GABA in learning and plasticity, others have hypothesized that their involvement shapes sensitive periods during development. Here we used a cross-sectional longitudinal design with 255 individuals (spanning primary school to university) to show that glutamate and GABA in the intraparietal sulcus explain unique variance both in current and future mathematical achievement (approximately 1.5 years). Furthermore, our findings reveal a dynamic and dissociable role of GABA and glutamate in predicting learning, which is reversed during development, and therefore provide novel implications for models of learning and plasticity during childhood and adulthood

    When change is the only constant:The promise of longitudinal neuroimaging in understanding social anxiety disorder

    Get PDF
    Longitudinal studies offer a unique window into developmental change. Yet, most of what we know about the pathophysiology of psychiatric disorders is based on cross-sectional work. Here, we highlight the importance of adopting a longitudinal approach in order to make progress into the identification of neurobiological mechanisms of social anxiety disorder (SAD). Using examples, we illustrate how longitudinal data can uniquely inform SAD etiology and timing of interventions. The brain’s inherently adaptive quality requires that we model risk correlates of disorders as dynamic in their expression. Developmental theories regarding timing of environmental events, cascading effects and (mal)adaptations of the developing brain will be crucial components of comprehensive, integrative models of SAD. We close by discussing analytical considerations in working with longitudinal, developmental data

    Investigating face-property specific processing in the right OFA

    Get PDF
    Within the neural face-processing network, the right occipital face area (rOFA) plays a prominent role, and it has been suggested that it receives both feed-forward and re-entrant feedback from other face sensitive areas. Its functional role is less well understood and whether the rOFA is involved in the initial analysis of a face stimulus or in the detailed integration of different face properties remains an open question. The present study investigated the functional role of the rOFA with regard to different face properties (identity, expression, and gaze) using transcranial magnetic stimulation (TMS). Experiment 1 showed that the rOFA integrates information across different face properties: performance for the combined processing of identity and expression decreased after TMS to the rOFA, while no impairment was seen in gaze processing. In Experiment 2 we examined the temporal dynamics of this effect. We pinpointed the impaired integrative computation to 170 ms post stimulus presentation. Together the results suggest that TMS to the rOFA affects the integrative processing of facial identity and expression at a mid-latency processing stage

    Using real-time fMRI to influence effective connectivity in the developing emotion regulation network

    Get PDF
    For most people, adolescence is synonymous with emotional turmoil and it has been shown that early difficulties with emotion regulation can lead to persistent problems for some people. This suggests that intervention during development might reduce long-term negative consequences for those individuals. Recent research has highlighted the suitability of real-time fMRI-based neurofeedback (NF) in training emotion regulation (ER) networks in adults. However, its usefulness in directly influencing plasticity in the maturing ER networks remains unclear. Here, we used NF to teach a group of 17 7–16 year-olds to up-regulate the bilateral insula, a key ER region. We found that all participants learned to increase activation during the up-regulation trials in comparison to the down-regulation trials. Importantly, a subsequent Granger causality analysis of Granger information flow within the wider ER network found that during up-regulation trials, bottom-up driven Granger information flow increased from the amygdala to the bilateral insula and from the left insula to the mid-cingulate cortex, supplementary motor area and the inferior parietal lobe. This was reversed during the down-regulation trials, where we observed an increase in top-down driven Granger information flow to the bilateral insula from mid-cingulate cortex, pre-central gyrus and inferior parietal lobule. This suggests that: 1) NF training had a differential effect on up-regulation vs down-regulation network connections, and that 2) our training was not only superficially concentrated on surface effects but also relevant with regards to the underlying neurocognitive bases. Together these findings highlight the feasibility of using NF in children and adolescents and its possible use for shaping key social cognitive networks during development

    Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements

    Get PDF
    Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain activation to the subject. The technique has become increasingly popular as a tool for the training of brain self-regulation, fueled by the superiority in spatial resolution and fidelity brought along with real-time analysis of fMRI (functional magnetic resonance imaging) data, compared to the more traditional EEG (electroencephalography) approach. NF learning is a complex phenomenon and a controversial discussion on its feasibility and mechanisms has arisen in the literature. Critical aspects of the design of fMRI-NF studies include the localization of neural targets, cognitive and operant aspects of the training procedure, personalization of training, and the definition of training success, both through neural effects and (for studies with therapeutic aims) through clinical effects. In this paper, we argue that a developmental perspective should inform neural target selection particularly for pediatric populations, and different success metrics may allow in-depth analysis of NF learning. The relevance of the functional neuroanatomy of NF learning for brain target selection is discussed. Furthermore, we address controversial topics such as the role of strategy instructions, sometimes given to subjects in order to facilitate learning, and the timing of feedback. Discussion of these topics opens sight on problems that require further conceptual and empirical work, in order to improve the impact that fMRI-NF could have on basic and applied research in future

    Process-based framework for precise neuromodulation

    Get PDF
    Functional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into brain-guided psychiatric interventions. However, its clinical implementation is restricted by unstandardized methodological practices, by clinical definitions that are poorly grounded in neurobiology, and by lack of a unifying framework that dictates experimental choices. Here we put forward a new framework, termed ‘process-based NF’, which endorses a process-oriented characterization of mental dysfunctions to form precise and effective psychiatric treatments. This framework relies on targeting specific dysfunctional mental processes by modifying their underlying neural mechanisms and on applying process-specific contextual feedback interfaces. Finally, process-based NF offers designs and a control condition that address the methodological shortcomings of current approaches, thus paving the way for a precise and personalized neuromodulation

    The n170 shows differential repetition effects for faces, objects, and orthographic stimuli

    Get PDF
    Previous event-related potentials research has suggested that the N170 component has a larger amplitude to faces and words than to other stimuli, but it remains unclear whether it indexes the same cognitive processes for faces and for words. The present study investigated how category-level repetition effects on the N170 differ across stimulus categories. Faces, cars, words, and non-words were presented in homogeneous (1 category) or mixed blocks (2 intermixed categories). We found a significant repetition effect of N170 amplitude for successively presented faces and cars (in homogeneous blocks), but not for words and unpronounceable consonant strings, suggesting that the N170 indexes different underlying cognitive processes for objects (including faces) and orthographic stimuli. The N170 amplitude was significantly smaller when multiple faces or multiple cars were presented in a row than when these stimuli were preceded by a stimulus of a different category. Moreover, the large N170 repetition effect for faces may be important to consider when comparing the relative N170 amplitude for different stimulus categories. Indeed, a larger N170 deflection for faces than for other stimulus categories was observed only when stimuli were preceded by a stimulus of a different category (in mixed blocks), suggesting that an enhanced N170 to faces may be more reliably observed when faces are presented within the context of some non-face stimuli
    • …
    corecore