58,303 research outputs found

    On a nonlinear theory of elastic shells

    Get PDF
    Nonlinear theory of elastic shells with deformation gradient

    Bose-Einstein condensate in a rapidly rotating non-symmetric trap

    Full text link
    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function psi(x,y) is a Gaussian exp(-r^2/2), multiplied by an analytic function f(z) of the complex variable z= x+ i y. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here, a similar description applies to a rapidly rotating non-symmetric two-dimensional trap with arbitrary quadratic anisotropy (omega_x^2 < omega_y^2). The corresponding condensate wave function psi(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z = x + i \beta_- y is a stretched complex variable and 0< \beta_- <1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L_z, which suggests that a non-symmetric trap should make it easier to observe this transition or (2) in terms of a "fragmented" correlated state, which suggests that a non-symmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).Comment: 20 page

    Voltage-dependent Block of the Cystic Fibrosis Transmembrane Conductance Regulator Cl- Channel by Two Closely Related Arylaminobenzoates

    Get PDF
    The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 µM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses ~40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 ± 0.4 pS in symmetric 150 mM Cl^-. A subconductance state, measuring ~60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 µM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at V_m =-100 mV and not at V_m = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (~ 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at V_m = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may offer tools for use with site-directed mutagenesis to describe the permeation pathway

    Low speed aerodynamic characteristics of an 0.075-scale F-15 airplane model at high angles of attack and sideslip

    Get PDF
    An 0.075 scale model representative of the F-15 airplane was tested in the Ames 12 foot pressure wind tunnel at a Mach number of 0.16 to determine static longitudinal and lateral directional characteristics at spin attitudes for Reynolds numbers from 1.48 to 16.4 million per meter (0.45 to 5.0 million per foot). Angles of attack ranged from 0 to +90 deg and from -40 deg to -80 deg while angles of sideslip were varied from -20 deg to +30 deg. Data were obtained for nacelle inlet ramp angles of 0 to 11 deg with the left and right stabilators deflected 0, -25 deg, and differentially 5 deg and -5 deg. The normal pointed nose and two alternate nose shapes were also tested along with several configurations of external stores. Analysis of the results indicate that at higher Reynolds numbers there is a slightly greater tendency to spin inverted than at lower Reynolds numbers. Use of a hemispherical nose in place of the normal pointed nose provided an over correction in simulating yawing moment effects at high Reynolds numbers

    Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors

    Get PDF
    We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose- response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors

    Optimization of Network Robustness to Waves of Targeted and Random Attack

    Full text link
    We study the robustness of complex networks to multiple waves of simultaneous (i) targeted attacks in which the highest degree nodes are removed and (ii) random attacks (or failures) in which fractions ptp_t and prp_r respectively of the nodes are removed until the network collapses. We find that the network design which optimizes network robustness has a bimodal degree distribution, with a fraction rr of the nodes having degree k_2= (\kav - 1 +r)/r and the remainder of the nodes having degree k1=1k_1=1, where \kav is the average degree of all the nodes. We find that the optimal value of rr is of the order of pt/prp_t/p_r for pt/pr1p_t/p_r\ll 1

    (De)Constructing Dimensions

    Get PDF
    We construct renormalizable, asymptotically free, four dimensional gauge theories that dynamically generate a fifth dimension.Comment: 10 pages, late

    New Challenges For Wind Shock Models: The Chandra Spectrum Of The Hot Star Delta Orionis

    Get PDF
    The Chandra spectrum of delta Ori A shows emission lines from hydrogen- and helium-like states of Si, Mg, Ne, and O, along with N VII Lyalpha and lines from ions in the range Fe XVII-Fe XXI In contrast to the broad lines seen in zeta Pup and zeta Ori (850 +/- 40 and 1000 +/- 240 km s(-1) half-width at half-maximum [HWHM], respectively), these lines are broadened to only 430 +/- 60 km s(-1) HWHM. This is much lower than the measured wind terminal velocity of 2000 km s(-1). The forbidden, intercombination, and resonance (fir) lines from He-like ions indicate that the majority of the X-ray line emission does not originate at the base of the wind, in agreement with the standard wind shock models for these objects. However, in that model the X-ray emission is distributed throughout an expanding, X-ray-absorbing wind, and it is therefore surprising that the emission lines appear relatively narrow, unshifted, and symmetric. We compare the observed line profiles to recent detailed models for X-ray line pro le generation in hot stars, but none of them offers a fully satisfactory explanation for the observed line profiles
    corecore