1,640 research outputs found

    Once more on θ\theta-vacua in 2+12+1 dimensional QED and 3+1 dimensional gluodynamics

    Full text link
    Two different but tightly connected problems, U(1)U(1) and strong CP violation problems, are discussed in two different models which exhibit both asymptotic freedom and confinement. One of them is the 3d Polyakov's model of compact QED and the other is 4d gluodynamics. It is shown that although both these models possess the long range interactions of the topological charges, only in the former case physics does not depend on θ\theta; while the latter exhibits an explicit θ\theta- dependence. The crucial difference is due to the observation, that the pseudoparticles of 4d gluodynamics possess an aditional quantum number, apart of the topological charge QQ .Comment: 15 page

    The Frequent Items Problem in Online Streaming under Various Performance Measures

    Full text link
    In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.Comment: IMADA-preprint-c

    An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsThe aim of this study, during one-lung ventilation, was to evaluate if oxygenation could be improved by use of a simple oxygen reservoir or application of 5 cmH2O continuous positive airway pressure (CPAP) to the non-ventilated lung compared with an open airway. Twenty-three patients with lung malignancy, undergoing thoracotomy requiring at least 60 minutes of one-lung ventilation before lung lobe excision, were studied. After routine induction and establishment of one-lung ventilation, the three treatments were applied in turn to the same patient in a sequence selected randomly. The first treatment was repeated as a fourth treatment and these results of the repeated treatment averaged to minimize the effect of slow changes. Arterial oxygenation was measured by an arterial blood gas 15 minutes after the application of each treatment. Twenty patients completed the study. Mean PaO2 (in mmHg) was 210.3 (SD 105.5) in the 'OPEN' treatment, 186.0 (SD 109.2) in the 'RESERVOIR' treatment, and 240.5 (SD 116.0) in the 'CPAP' treatment. This overall difference was not quite significant (P=0.058, paired ANOVA), but comparison of the pairs showed that there was a significant better oxygenation only with the CPAP compared to the reservoir treatments (t=2.52, P=0.021). While the effect on the surgical field was not apparent in most patients, in one patient surgery was impeded during CPAP. Our results show that the use of a reservoir does not give oxygenation better than an open tube, and is less effective than the use of CPAP 5 cmH2O on the non-ventilated lung during one-lung ventilation.J. Slimani, W. J. Russell, C. Jurisevichttp://www.aaic.net.au/Article.asp?D=200404

    Fractons in Twisted Multiflavor Schwinger Model

    Get PDF
    We consider two-dimensional QED with several fermion flavors on a finite spatial circle. A modified version of the model with {\em flavor-dependent} boundary conditions ψp(L)=e2πip/Nψp(0)\psi_p(L) = e^{2\pi ip/ N} \psi_p(0), p=1,,Np = 1, \ldots , N is discussed (NN is the number of flavors). In this case a non-contactable contour in the space of the gauge fields is {\em not} determined by large gauge transformations. The Euclidean path integral acquires the contribution from the gauge field configurations with fractional topological charge. The configuration with ν=1/N\nu = 1/N is responsible for the formation of the fermion condensate ψˉpψp0\langle\bar{\psi}_p \psi_p\rangle_0. The condensate dies out as a power of L1L^{-1} when the length LL of the spatial box is sent to infinity. Implications of this result for non-abelian gauge field theories are discussed in brief.Comment: 29 pages, 3 figures available upon request, Report TPI-MINN-94-24-T Plain LATE

    Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions

    Full text link
    Various features of the mass yields in heavy ion collisions are studied. The mass yields are discussed in terms of iterative one dimensional discrete maps. These maps are shown to produce orbits for a monomer or for a nucleus which generate the mass yields and the distribution of cluster sizes. Simple Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov exponents are discussed for the mass distribution. The self-similar property of the Malthusian orbit offers a new variable for the study of scale invariance using power moments of the mass distribution. Correlation lengths, exponents and dimensions associated with scaling relations are developed. Fourier transforms of the mass distribution are used to obtain power spectra which are investigated for a 1/fβ1/f^{\beta} behavior.Comment: 29 pages in REVTEX, 9 figures (available from the authors), RU-92-0

    On the global hydration kinetics of tricalcium silicate cement

    Full text link
    We reconsider a number of measurements for the overall hydration kinetics of tricalcium silicate pastes having an initial water to cement weight ratio close to 0.5. We find that the time dependent ratio of hydrated and unhydrated silica mole numbers can be well characterized by two power-laws in time, x/(1x)(t/tx)ψx/(1-x)\sim (t/t_x)^\psi. For early times t<txt < t_x we find an `accelerated' hydration (ψ=5/2\psi = 5/2) and for later times t>txt > t_x a `deaccelerated' behavior (ψ=1/2\psi = 1/2). The crossover time is estimated as tx16hourst_x \approx 16 hours. We interpret these results in terms of a global second order rate equation indicating that (a) hydrates catalyse the hydration process for t<txt<t_x, (b) they inhibit further hydration for t>txt > t_x and (c) the value of the associated second order rate constant is of magnitude 6x10^{-7} - 7x10^{-6} liter mol^{-1} s^{-1}. We argue, by considering the hydration process actually being furnished as a diffusion limited precipitation that the exponents ψ=5/2\psi = 5/2 and ψ=1/2\psi = 1/2 directly indicate a preferentially `plate' like hydrate microstructure. This is essentially in agreement with experimental observations of cellular hydrate microstructures for this class of materials.Comment: RevTeX macros, 6 pages, 4 postscript figure

    Statistics of Lyapunov exponent in one-dimensional layered systems

    Full text link
    Localization of acoustic waves in a one dimensional water duct containing many randomly distributed air filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties are also explored extensively. The results reveal that in this system the single parameter scaling is generally inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This contradicts the earlier observations in an optical case. We compare the results with two optical cases and give a possible explanation of the origin of the different behaviors.Comment: 6 pages revtex file, 6 eps figure

    Thermal Stabilization of the HCP Phase in Titanium

    Full text link
    We have used a tight-binding model that is fit to first-principles electronic-structure calculations for titanium to calculate quasi-harmonic phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega crystal structures. We show that the true zero-temperature ground-state is the omega structure, although this has never been observed experimentally at normal pressure, and that it is the entropy from the thermal population of phonon states which stabilizes the hcp structure at room temperature. We present the first completely theoretical prediction of the temperature- and pressure-dependence of the hcp-omega phase transformation and show that it is in good agreement with experiment. The quasi-harmonic approximation fails to adequately treat the bcc phase because the zero-temperature phonons of this structure are not all stable

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width
    corecore