1,760 research outputs found

    Controlled Nanoparticle Formation by Diffusion Limited Coalescence

    Get PDF
    Polymeric nanoparticles (NPs) have a great application potential in science and technology. Their functionality strongly depends on their size. We present a theory for the size of NPs formed by precipitation of polymers into a bad solvent in the presence of a stabilizing surfactant. The analytical theory is based upon diffusion-limited coalescence kinetics of the polymers. Two relevant time scales, a mixing and a coalescence time, are identified and their ratio is shown to determine the final NP diameter. The size is found to scale in a universal manner and is predominantly sensitive to the mixing time and the polymer concentration if the surfactant concentration is sufficiently high. The model predictions are in good agreement with experimental data. Hence the theory provides a solid framework for tailoring nanoparticles with a priori determined size.Comment: 4 pages, 3 figure

    Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles

    Full text link
    We have used the Scheutjens-Fleer self-consistent field (SF-SCF) method to predict the self-assembly of triblock copolymers with a solvophilic middle block and sufficiently long solvophobic outer blocks. We model copolymers consisting of polyethylene oxide (PEO) as solvophilic block and poly(lactic-co-glycolic) acid (PLGA) or poly({\ko}-caprolactone) (PCL) as solvophobic block. These copolymers form structurally quenched spherical micelles provided the solvophilic block is long enough. Predictions are calibrated on experimental data for micelles composed of PCL-PEO-PCL and PLGA-PEO-PLGA triblock copolymers prepared via the nanoprecipitation method. We establish effective interaction parameters that enable us to predict various micelle properties such as the hydrodynamic size, the aggregation number and the loading capacity of the micelles for hydrophobic species that are consistent with experimental finding.Comment: accepted for publication in Soft Matte

    Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care

    Get PDF
    Although many sepsis biomarkers have shown promise in selected patient groups, only C-reactive protein and procalcitonin (PCT) have entered clinical practice. The aim of this study was to evaluate three promising novel sepsis biomarkers in unselected patients at admission to intensive care. We assessed the performance of pancreatic stone protein (PSP), soluble CD25 (sCD25) and heparin binding protein (HBP) in distinguishing patients with sepsis from those with a non-infective systemic inflammatory response and the ability of these markers to indicate severity of illness. METHODS: Plasma levels of the biomarkers, PCT and selected inflammatory cytokines were measured in samples taken from 219 patients during the first six hours of admission to intensive or high dependency care. Patients with a systemic inflammatory response were categorized as having sepsis or a non-infective aetiology, with or without markers of severity, using standard diagnostic criteria. RESULTS: Both PSP and sCD25 performed well as biomarkers of sepsis irrespective of severity of illness. For both markers the area under the receiver operating curve (AUC) was greater than 0.9; PSP 0.927 (0.887 to 0.968) and sCD25 0.902 (0.854 to 0.949). Procalcitonin and IL6 also performed well as markers of sepsis whilst in this intensive care unit (ICU) population, HBP did not: PCT 0.840 (0.778 to 0.901), IL6 0.805 (0.739 to 0.870) and HBP 0.607 (0.519 to 0.694). Levels of both PSP and PCT reflected severity of illness and both markers performed well in differentiating patients with severe sepsis from severely ill patients with a non-infective systemic inflammatory response: AUCs 0.955 (0.909 to 1) and 0.837 (0.732 to 0.941) respectively. Although levels of sCD25 did not correlate with severity, the addition of sCD25 to either PCT or PSP in a multivariate model improved the diagnostic accuracy of either marker alone. CONCLUSIONS: PSP and sCD25 perform well as sepsis biomarkers in patients with suspected sepsis at the time of admission to intensive or high dependency care. These markers warrant further assessment of their prognostic value. Whereas previously published data indicate HBP has clinical utility in the emergency department, it did not perform well in an intensive-care population

    Sparse Deterministic Approximation of Bayesian Inverse Problems

    Get PDF
    We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial differential equations, and the inverse problem is to determine the unknown, parametric deterministic coefficients from noisy observations comprising linear functionals of the solution. We prove a generalized polynomial chaos representation of the posterior density with respect to the prior measure, given noisy observational data. We analyze the sparsity of the posterior density in terms of the summability of the input data's coefficient sequence. To this end, we estimate the fluctuations in the prior. We exhibit sufficient conditions on the prior model in order for approximations of the posterior density to converge at a given algebraic rate, in terms of the number NN of unknowns appearing in the parameteric representation of the prior measure. Similar sparsity and approximation results are also exhibited for the solution and covariance of the elliptic partial differential equation under the posterior. These results then form the basis for efficient uncertainty quantification, in the presence of data with noise

    Collaboration between Science and Religious Education teachers in Scottish Secondary schools

    Get PDF
    The article reports on quantitative research that examines: (1) the current practice in collaboration; and (2) potential for collaboration between Science and Religious Education teachers in a large sample of Scottish secondary schools. The authors adopt and adapt three models (conflict; concordat and consonance) to interrogate the relationship between science and religion (and the perceived relation between these two subjects in schools) (Astley and Francis 2010). The findings indicate that there is evidence of limited collaboration and, in a few cases, a dismissive attitude towards collaboration (conflict and concordat and very weak consonance). There is, however, evidence of a genuine aspiration for greater collaboration among many teachers (moving towards a more robust consonance model). The article concludes by discussing a number of key factors that must be realised for this greater collaboration to be enacted

    Ethics and the Public Administrator

    Get PDF
    This article provides an overview and analysis of the practical problems of developing and implementing a code of ethics for public administrators. The article addresses three key issues: (1) What are public ethics and where do they come from? (2) What are the central ethical issues facing public administrators? and (3) Are there practical tools and guidelines to assist public servants to be both ethical and effective public managers? The article concludes with a plea for consideration of ethical issues, and it presents five general ethical principles for public administrators

    Evaluating the End-User Experience of Private Browsing Mode

    Get PDF
    Nowadays, all major web browsers have a private browsing mode. However, the mode's benefits and limitations are not particularly understood. Through the use of survey studies, prior work has found that most users are either unaware of private browsing or do not use it. Further, those who do use private browsing generally have misconceptions about what protection it provides. However, prior work has not investigated \emph{why} users misunderstand the benefits and limitations of private browsing. In this work, we do so by designing and conducting a three-part study: (1) an analytical approach combining cognitive walkthrough and heuristic evaluation to inspect the user interface of private mode in different browsers; (2) a qualitative, interview-based study to explore users' mental models of private browsing and its security goals; (3) a participatory design study to investigate why existing browser disclosures, the in-browser explanations of private browsing mode, do not communicate the security goals of private browsing to users. Participants critiqued the browser disclosures of three web browsers: Brave, Firefox, and Google Chrome, and then designed new ones. We find that the user interface of private mode in different web browsers violates several well-established design guidelines and heuristics. Further, most participants had incorrect mental models of private browsing, influencing their understanding and usage of private mode. Additionally, we find that existing browser disclosures are not only vague, but also misleading. None of the three studied browser disclosures communicates or explains the primary security goal of private browsing. Drawing from the results of our user study, we extract a set of design recommendations that we encourage browser designers to validate, in order to design more effective and informative browser disclosures related to private mode

    Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues

    Get PDF
    Advances in single-cell antibody cloning methods have led to the identification of a variety of broadly neutralizing anti–HIV-1 antibodies. We developed a computational tool (Antibody Database) to help identify critical residues on the HIV-1 envelope protein whose natural variation affects antibody activity. Our simplifying assumption was that, for a given antibody, a significant portion of the dispersion of neutralization activity across a panel of HIV-1 strains is due to the amino acid identity or glycosylation state at a small number of specific sites, each acting independently. A model of an antibody’s neutralization IC_(50) was developed in which each site contributes a term to the logarithm of the modeled IC_(50). The analysis program attempts to determine the set of rules that minimizes the sum of the residuals between observed and modeled IC_(50) values. The predictive quality of the identified rules may be assessed in part by whether there is support for rules within individual viral clades. As a test case, we analyzed antibody 8ANC195, an anti-glycoprotein gp120 antibody of unknown specificity. The model for this antibody indicated that several glycosylation sites were critical for neutralization. We evaluated this prediction by measuring neutralization potencies of 8ANC195 against HIV-1 in vitro and in an antibody therapy experiment in humanized mice. These experiments confirmed that 8ANC195 represents a distinct class of glycan-dependent anti–HIV-1 antibody and validated the utility of computational analysis of neutralization panel data
    corecore