534 research outputs found

    Optical, gravitational, and kinesthetic determinants of judged eye level

    Get PDF
    Subjects judged eye level, defined in three distinct ways relative to three distinct reference planes: a gravitational horizontal, giving the gravitationally referenced eye level (GREL); a visible surface, giving the surface-referenced eye level (SREL); and a plane fixed with respect to the head, giving the head-referenced eye level (HREL). The information available for these judgements was varied by having the subjects view an illuminated target that could be placed in a box which: (1) was pitched at various angles, (2) was illuminated or kept in darkness, (3) was moved to different positions along the subject's head-to-foot body axis, and (4) was viewed with the subjects upright or reclining. The results showed: (1) judgements of GREL made in the dark were 2.5 deg lower than in the light, with a significantly greater variability; (2) judged GREL was shifted approximately half of the way toward SREL when these two eye levels did not coincide; (3) judged SREL was shifted about 12 percent of the way toward HREL when these two eye levels did not coincide, (4) judged HREL was shifted about half way toward SREL when these two eye level did not coincide and when the subject was upright (when the subject was reclining, HREL was shifted approx. 90 percent toward SREL); (5) the variability of the judged HREL in the dark was nearly twice as great with the subject reclining than with the subject upright. These results indicate that gravity is an important source of information for judgement of eye level. In the absence of information concerning the direction of gravity, the ability to judge HREL is extremely poor. A visible environment does not seem to afford precise information as to judgements of direction, but it probably does afford significant information as to the stability of these judgements

    Adapting to variable prismatic displacement

    Get PDF
    In each of two studies, subjects were exposed to a continuously changing prismatic displacement with a mean value of 19 prism diopters (variable displacement) and to a fixed 19-diopter displacement (fixed displacement). In Experiment 1, significant adaptation (post-pre shifts in hand-eye coordination) was found for fixed, but not for variable, displacement. Experiment 2 demonstrated that adaptation was obtained for variable displacement, but it was very fragile and is lost if the measures of adaptation are preceded by even a very brief exposure of the hand to normal or near-normal vision. Contrary to the results of some previous studies, an increase in within-S dispersion was not found of target pointing responses as a result of exposure to variable displacement

    Transfer of training for aerospace operations: How to measure, validate, and improve it

    Get PDF
    It has been a commonly accepted practice to train pilots and astronauts in expensive, extremely sophisticated, high fidelity simulators, with as much of the real-world feel and response as possible. High fidelity and high validity have often been assumed to be inextricably interwoven, although this assumption may not be warranted. The Project Mercury rate-damping task on the Naval Air Warfare Center's Human Centrifuge Dynamic Flight Simulator, the shuttle landing task on the NASA-ARC Vertical Motion Simulator, and the almost complete acceptance by the airline industry of full-up Boeing 767 flight simulators, are just a few examples of this approach. For obvious reasons, the classical models of transfer of training have never been adequately evaluated in aerospace operations, and there have been few, if any, scientifically valid replacements for the classical models. This paper reviews some of the earlier work involving transfer of training in aerospace operations, and discusses some of the methods by which appropriate criteria for assessing the validity of training may be established

    Effects of Optical Pitch on Oculomotor Control and the Perception of Target Elevation

    Get PDF
    In two experiments, we used an ISCAN infrared video system to examine the influence of a pitched visual array on gaze elevation and on judgments of visually perceived eye level. In Experiment 1, subjects attempted to direct their gaze to a relaxed or to a horizontal orientation while they were seated in a room whose walls were pitched at various angles with respect to gravity. Gaze elevation was biased in the direction in which the room was pitched. In Experiment 2, subjects looked into a small box that was pitched at various angles while they attempted simply to direct their gaze alone, or to direct their gaze and place a visual target at their apparent horizon. Both gaze elevation and target settings varied systematically with the pitch orientation of the box. Our results suggest that under these conditions, an optostatic response, of which the subject is unaware, is responsible for the changes in both gaze elevation and judgments of target elevation

    "It All Ended in an Unsporting Way": Serbian Football and the Disintegration of Yugoslavia, 1989-2006

    Get PDF
    Part of a wider examination into football during the collapse of Eastern European Communism between 1989 and 1991, this article studies the interplay between Serbian football and politics during the period of Yugoslavia's demise. Research utilizing interviews with individuals directly involved in the Serbian game, in conjunction with contemporary Yugoslav media sources, indicates that football played an important proactive role in the revival of Serbian nationalism. At the same time the Yugoslav conflict, twinned with a complex transition to a market economy, had disastrous consequences for football throughout the territories of the former Yugoslavia. In the years following the hostilities the Serbian game has suffered decline, major financial hardship and continuing terrace violence, resulting in widespread nostalgia for the pre-conflict era

    Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order

    Get PDF
    We study the four channels associated with neutrino-deuteron breakup reactions at next-to-next to leading order in effective field theory. We find that the total cross-section is indeed converging for neutrino energies up to 20 MeV, and thus our calculations can provide constraints on theoretical uncertainties for the Sudbury Neutrino Observatory. We stress the importance of a direct experimental measurement to high precision in at least one channel, in order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps

    Electromagnetic Moments of the Baryon Decuplet

    Full text link
    We compute the leading contributions to the magnetic dipole and electric quadrupole moments of the baryon decuplet in chiral perturbation theory. The measured value for the magnetic moment of the Ω\Omega^- is used to determine the local counterterm for the magnetic moments. We compare the chiral perturbation theory predictions for the magnetic moments of the decuplet with those of the baryon octet and find reasonable agreement with the predictions of the large--NcN_c limit of QCD. The leading contribution to the quadrupole moment of the Δ\Delta and other members of the decuplet comes from one--loop graphs. The pionic contribution is shown to be proportional to IzI_z (and so will not contribute to the quadrupole moment of I=0I=0 nuclei), while the contribution from kaons has both isovector and isoscalar components. The chiral logarithmic enhancement of both pion and kaon loops has a coefficient that vanishes in the SU(6)SU(6) limit. The third allowed moment, the magnetic octupole, is shown to be dominated by a local counterterm with corrections arising at two loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5

    Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium

    Get PDF
    Trichodesmium is a globally important marine microbe that provides fixed nitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixation is likely regulated by iron or phosphate availability, but the extent and interaction of these controls are unclear. From metaproteomics analyses using established protein biomarkers for nutrient stress, we found that iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in the North Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was more abundant under co-stress as opposed to single nutrient stress. This is consistent with the idea that Trichodesmium has a specific physiological state during nutrient co-stress. Organic nitrogen uptake was observed and occurred simultaneously with nitrogen fixation. The quantification of the phosphate ABC transporter PstA combined with a cellular model of nutrient uptake suggested that Trichodesmium is generally confronted by the biophysical limits of membrane space and diffusion rates for iron and phosphate acquisition in the field. Colony formation may benefit nutrient acquisition from particulate and organic sources, alleviating these pressures. The results highlight that to predict the behavior of Trichodesmium, both Fe and P stress must be evaluated simultaneously

    High-Resolution Sampling of a Broad Marine Life Size Spectrum Reveals Differing Size- and Composition-Based Associations With Physical Oceanographic Structure

    Get PDF
    Observing multiple size classes of organisms, along with oceanographic properties and water mass origins, can improve our understanding of the drivers of aggregations, yet acquiring these measurements remains a fundamental challenge in biological oceanography. By deploying multiple biological sampling systems, from conventional bottle and net sampling to in situ imaging and acoustics, we describe the spatial patterns of different size classes of marine organisms (several microns to ∼10 cm) in relation to local and regional (m to km) physical oceanographic conditions on the Delaware continental shelf. The imaging and acoustic systems deployed included (in ascending order of target organism size) an imaging flow cytometer (CytoSense), a digital holographic imaging system (HOLOCAM), an In Situ Ichthyoplankton Imaging System (ISIIS, 2 cameras with different pixel resolutions), and multi-frequency acoustics (SIMRAD, 18 and 38 kHz). Spatial patterns generated by the different systems showed size-dependent aggregations and differing connections to horizontal and vertical salinity and temperature gradients that would not have been detected with traditional station-based sampling (∼9-km resolution). A direct comparison of the two ISIIS cameras showed composition and spatial patchiness changes that depended on the organism size, morphology, and camera pixel resolution. Large zooplankton near the surface, primarily composed of appendicularians and gelatinous organisms, tended to be more abundant offshore near the shelf break. This region was also associated with high phytoplankton biomass and higher overall organism abundances in the ISIIS, acoustics, and targeted net sampling. In contrast, the inshore region was dominated by hard-bodied zooplankton and had relatively low acoustic backscatter. The nets showed a community dominated by copepods, but they also showed high relative abundances of soft-bodied organisms in the offshore region where these organisms were quantified by the ISIIS. The HOLOCAM detected dense patches of ciliates that were too small to be captured in the nets or ISIIS imagery. This near-simultaneous deployment of different systems enables the description of the spatial patterns of different organism size classes, their spatial relation to potential prey and predators, and their association with specific oceanographic conditions. These datasets can also be used to evaluate the efficacy of sampling techniques, ultimately aiding in the design of efficient, hypothesis-driven sampling programs that incorporate these complementary technologies

    Epstein-Barr Virus Coinfection in Cerebrospinal Fluid Is Associated With Increased Mortality in Malawian Adults With Bacterial Meningitis

    Get PDF
    Mortality from adult bacterial meningitis exceeds 50% in sub-Saharan Africa. We postulated that—particularly in individuals infected with human immunodeficiency virus (HIV)—herpes simplex virus, varicella zoster virus, Epstein-Barr virus (EBV), and cytomegalovirus (CMV) in the cerebrospinal fluid (CSF) contribute to poor outcome. CSF from 149 Malawian adults with bacterial meningitis and 39 controls were analyzed using polymerase chain reaction. EBV was detected in 79 of 149 bacterial meningitis patients. Mortality (54%) was associated with higher CSF EBV load when adjusted for HIV (P = .01). CMV was detected in 11 of 115 HIV-infected patients, 8 of whom died. The mechanisms by which EBV and CMV contribute to poor outcome require further investigation
    corecore