136,130 research outputs found

    Exploding spheres of dust

    Get PDF
    Gravitational collapse of spherical balls of dus

    Speech therapy and voice recognition instrument

    Get PDF
    Characteristics of electronic circuit for examining variations in vocal excitation for diagnostic purposes and in speech recognition for determiniog voice patterns and pitch changes are described. Operation of the circuit is discussed and circuit diagram is provided

    Preferential duplication graphs

    Get PDF
    We consider a preferential duplication model for growing random graphs, extending previous models of duplication graphs by selecting the vertex to be duplicated with probability proportional to its degree. We show that a special case of this model can be analysed using the same stochastic approximation as for vertex-reinforced random walks, and show that 'trapping' behaviour can occur, such that the descendants of a particular group of initial vertices come to dominate the graph

    Covers of Point-Hyperplane Graphs

    Full text link
    We construct a cover of the non-incident point-hyperplane graph of projective dimension 3 for fields of characteristic 2. If the cardinality of the field is larger than 2, we obtain an elementary construction of the non-split extension of SL_4 (F) by F^6.Comment: 10 pages, 3 figure

    Diffractive energy spreading and its semiclassical limit

    Full text link
    We consider driven systems where the driving induces jumps in energy space: (1) particles pulsed by a step potential; (2) particles in a box with a moving wall; (3) particles in a ring driven by an electro-motive-force. In all these cases the route towards quantum-classical correspondence is highly non-trivial. Some insight is gained by observing that the dynamics in energy space, where nn is the level index, is essentially the same as that of Bloch electrons in a tight binding model, where nn is the site index. The mean level spacing is like a constant electric field and the driving induces long range hopping 1/(n-m).Comment: 19 pages, 11 figs, published version with some improved figure

    Asymptotic Methods for Metal Oxide Semiconductor Field Effect Transistor Modeling

    Get PDF
    The behavior of metal oxide semiconductor field effect transistors (MOSFETs) with small aspect ratio and large doping levels is analyzed using formal perturbation techniques. Specifically, the influence of interface layers in the potential on the averaged channel conductivity is closely examined. The interface and internal layers that occur in the potential are resolved in the limit of large doping using the method of matched asymptotic expansions. This approach, together with other asymptotic techniques, provides both a pointwise description of the state variables as well as lumped current-voltage relations that vary uniformly across the various bias regimes. These current-voltage relations are derived for a variable doping model respresenting a particular class of devices

    An Experimental Evaluation of Oil Pumping Rings

    Get PDF
    The design and construction of a reciprocating test vehicle to be used in evaluating hydrodynamic oil pumping rings are discussed. In addition, experimental test data are presented for three pumping ring designs that were constructed from Tin-Based Babbitt (SAE 11), Bearing Bronze (SAE 660), and Mechanical Carbon Graphite (Union Carbide Grade CNF-J). Data of pumped flow rate versus delivered pressure, as well as friction loss, are reported for the following conditions: frequencies of 10, 35 and 45 Hz; strokes of 25.4 mm (1.00 in.), 38.1 mm (1.50 in.) and 50.8 mm (2.00 in.) oil inlet temperature of 49 degrees (120 degrees); and pumping ring close-in pressures of 10.3 MPa (1500 lb/square inch. A 20W40 automotive oil was used for all tests. The maximum delivered pressure was 11 MPa (1600 lb/square inch. An analysis of hydrodynamic oil pumping rings was performed and the results of the analysis were compared to measured test data

    Charge Transfer in Partition Theory

    Full text link
    The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)] is illustrated on a simple one-dimensional model of a heteronuclear diatomic molecule. It is shown that a sharp definition for the charge of molecular fragments emerges from PT, and that the ensuing population analysis can be used to study how charge redistributes during dissociation and the implications of that redistribution for the dipole moment. Interpreting small differences between the isolated parts' ionization potentials as due to environmental inhomogeneities, we gain insight into how electron localization takes place in H2+ as the molecule dissociates. Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are varied, we address the issue of transferability of the parts. We find good transferability within the chemically meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.Comment: 12 pages, 16 figure
    • …
    corecore