958 research outputs found

    Resilience of Complex Networks to Random Breakdown

    Full text link
    Using Monte Carlo simulations we calculate fcf_c, the fraction of nodes which are randomly removed before global connectivity is lost, for networks with scale-free and bimodal degree distributions. Our results differ with the results predicted by an equation for fcf_c proposed by Cohen, et al. We discuss the reasons for this disagreement and clarify the domain for which the proposed equation is valid

    Reliability model generator

    Get PDF
    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description

    BH3 profiling and a toolkit of BH3-mimetic drugs predict anti-apoptotic dependence of cancer cells

    Get PDF
    BACKGROUND: Anti-apoptotic BCL-2 family members antagonise apoptosis by sequestering their pro-apoptotic counterparts. The balance between the different BCL-2 family members forms the basis of BH3 profiling, a peptide-based technique used to predict chemosensitivity of cancer cells. Recent identification of cell-permeable, selective inhibitors of BCL-2, BCL-X(L) and MCL-1, further facilitates the determination of the BCL-2 family dependency of cancer cells. METHODS: We use BH3 profiling in combination with cell death analyses using a chemical inhibitor toolkit to assess chemosensitivity of cancer cells. RESULTS: Both BH3 profiling and the inhibitor toolkit effectively predict chemosensitivity of cells addicted to a single anti-apoptotic protein but a combination of both techniques is more instructive when cell survival depends on more than one anti-apoptotic protein. CONCLUSIONS: The inhibitor toolkit provides a rapid, inexpensive and simple means to assess the chemosensitivity of tumour cells and in conjunction with BH3 profiling offers much potential in personalising cancer therapy

    Graph Partitioning Induced Phase Transitions

    Full text link
    We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree kk. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at f=fc=1−2/kf=f_c=1-2/k where ff is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find S∼N0.4S \sim N^{0.4} where SS is the size of the clusters and ℓ∼N0.25\ell\sim N^{0.25} where ℓ\ell is their diameter. Additionally, we find that SS undergoes multiple non-percolation transitions for f<fcf<f_c

    Processing/Activation of At Least Four Interleukin-1β Converting Enzyme–like Proteases Occurs during the Execution Phase of Apoptosis in Human Monocytic Tumor Cells

    Get PDF
    Identification of the processing/activation of multiple interleukin-1β converting enzyme (ICE)–like proteases and their target substrates in the intact cell is critical to our understanding of the apoptotic process. In this study we demonstrate processing/activation of at least four ICE-like proteases during the execution phase of apoptosis in human monocytic tumor THP.1 cells. Apoptosis was accompanied by processing of Ich-1, CPP32, and Mch3α to their catalytically active subunits, and lysates from these cells displayed a proteolytic activity with kinetics, characteristic of CPP32/Mch3α but not of ICE. Fluorescence-activated cell sorting was used to obtain pure populations of normal and apoptotic cells. In apoptotic cells, extensive cleavage of Ich-1, CPP32, and Mch3α was observed together with proteolysis of the ICE-like protease substrates, poly (ADP-ribose) polymerase (PARP), the 70-kD protein component of U1 small nuclear ribonucleoprotein (U170K), and lamins A/B. In contrast, no cleavage of CPP32, Mch3α or the substrates was observed in normal cells. In cells exposed to an apoptotic stimulus, some processing of Ich-1 was detected in morphologically normal cells, suggesting that cleavage of Ich-1 may occur early in the apoptotic process. The ICE-like protease inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), inhibited apoptosis and cleavage of Ich-1, CPP32, Mch3α, Mch2α, PARP, U1-70K, and lamins. These results suggest that Z-VAD.FMK inhibits apoptosis by inhibiting a key effector protease upstream of Ich-1, CPP32, Mch3α, and Mch2α. Together these observations demonstrate that processing/activation of Ich-1, CPP32, Mch3α, and Mch2α accompanies the execution phase of apoptosis in THP.1 cells. This is the first demonstration of the activation of at least four ICE-like proteases in apoptotic cells, providing further evidence for a requirement for the activation of multiple ICE-like proteases during apoptosis

    DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis

    Get PDF
    The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis

    Comparative Analysis of the Proliferative Response of the Rat Urinary Bladder to Sodium Saccharin by Light and Scanning Electron Microscopy and Autoradiography

    Get PDF
    Three methods used to detect proliferative changes in the rat urothelium, light microscopy, scanning electron microscopy, and autoradiography, were compared for their sensitivity in detecting changes produced by administration of sodium saccharin. Weanling male F344 rats were fed sodium saccharin as 0, 3, 5, or 7.5% of the diet, and the bladders were evaluated after 4, 7, and 10 wks of feeding. Light microscopic changes and an increase in labeling index were seen at all time points in rats fed 7.5 % sodium saccharin, but not at the lower doses. A slight increase in labeling index was also observed at 10 wks in the 5.0% group. Scanning electron microscopic changes were evident as early as 4 wks with increasing severity at the 3, 5, and 7.5 % doses. This study demonstrates that the hyperplastic response of the urothelium to sodium saccharin administration varies with dose and time, and that observation by scanning electron microscopy is the most sensitive of the three methods evaluated for detecting these changes
    • …
    corecore