
United States Patent [191 [il l Patent Number: 5,014,220
McMann et al. [45] Date of Patent: May 7, 1991

[54] RELIABILITY MODEL GENERATOR

[75] Inventors: Catherine M. McMnnn, Renton;
Cerdd C. &hen, Seattle, both of
Wash.

(731 Assignee: The Bwing Company, Seattle, Wash.

[21] Appl. No.: 241,540

[22] Filed: Sep. 6, 1988

[51] Int. (3 . 5 GO6F 15/18; G06F 13/14
(521 U.S. c1. 364/513; 364/200;

3W274.3
[58] Field of Search 364/186, 187, 188, 189,

364/513, 578, 200, 900

[561 References Cited
U.S. PATENT DOCUMENTS

3,882,305 VI975 Johnstone
3,902,051 8/1975 Betten
4,155,116 5/1979 Tawtik et
4,593,367 6/1986 Slack et al 364/513
4,599,692 7/1986 Tan et al.
4,599,693 7/1986 Denenber
4,620,286 10/1986 Smith et al. 364/513
4,642,782 2/1987 Kemper et al. . 364/513
4,644,479 2/1987 Kemper et at. 364/513
4,649,515 3/1987 Thompson et a]. 364/513
4,675,829 6/1987 Clemenson 364/513

4,697,243 9/1987 Moore et al. 364/513
4,704,695 1]/I987 Kimura et ai. 3645 13
4,713,775 12/1987 Scott et at. 364/513
4,752,889 6/1988 Rapaport et al. 364/513
4,839,823 6/1989 Matsumoto 364/513
4,847,784 7/1989 Clancey 364/513

Primury Exuminer-Felix D. Gruber
Attorney. Agent, or Firm-Seed & Berry

(571 ABSTRACT

An improved method and system for automatically
generating reliability models for use with a reliability
evaluation tool is described. The reliability model gen-
erator of the present invention includes means for stor-
ing a plurality of low level reliability models which
represent the reliability characteristics for low level
system components. In addition, the present invention
includes means for defining the interconnection of the
low level reliability models via a system architecture
description. In accordance with the principles of the
present invention, a reliability model for the entire sys-
tem is automatically generated by aggregating the low
level reliability models based on the system architecture
description.

23 Claims, 62 Drawing Sheets

Model

Reliability Reliability
Model

Builder

204

Reducer/
Encoder

Model

Markov
Reliabillty
Analysis

Tool

104

I
220'

110 Results

https://ntrs.nasa.gov/search.jsp?R=20080004415 2019-08-30T02:36:15+00:00Z

U.S. Patent Sheet 1 of 62 5,014,220 May 7, 1991

U,S, Patent May 7, 1991 Sheet 2 of 62 5,014,220

7

7
z

SPACE = (NGFTPl: 0.. 1, r FTP CHANNEL STATUS r PARTnION INTERFACE STA US *)
r PARTITION lNTERFACE STAT '1 S *) r U P CHANNEL STATUS

PART'lON INTERFACE STATUS *) r FTP CHANNEL STATUS
(* PARrmON INTERFACE STA US =)
(*PARTITION INTERFACE STATUS) r FTP CHANNEL STATUS r PARTmON INTERFACE STAT S *)

NPARI 1: O..l,
NGFTP2: O..l,
NPARl2: O..l,
NPA R22: 0.. 1,
NGFTP3: O..l,
NPARI3: O..l,
NPAR23: O..l,
NGFTP4: O..l,
NPAR24: O..l;

START = (1,1, 1,1, 1, I , I , I , 1,I);
DEA THIF NGFTPl + NGFTP2 + NGFTP3 + NGFTP4 c 2

OR NPARll + NPARl2 + NPAR13
+ NPAR22 + NPAR23 + NPAR24 < I ; PSINGLE PARTITION SUCCESS '*)

PSINGLE PARTITION SUCCESS CASE *)

P FTP CHANNEL FAILURE RATE

r -INCLUDES ROOT NODE- 7

*)
--INCLUDES CENTRAL POWER SOURCE- *)

LAMFTP = 220.0E-6;

LAMCOM = 40.0E-6; r FTP NETWORK INTERFACE FAILURE RATE *I

IF NGlTf 1 > 0 TRANTO NGFTPlz 0, NPARl ls 0

IF NGlTP2 > 0 TRANTO NGFTP2 = 0, NPAR12= 0,
BY LAMFTP;

NPAR = 0
BY LAMFTP:

IF NGFTP3 > 0 TRANTO NGFTP3 = 0, NPARl3 = 0
NPAR23 = 0
BY LAMFTP;

IF NGFTP4 0 TRANTO NGFW4 = 0, NPAR24 = 0,
BY LAMFTP;

IF NPARl l> 0 T R A M 0 NPARll = 0 BY LAMCOM;
IF NPARlO+ 0 TRANTO NPARl2 = 0 BY LAMCOM;
IF NPAR13> 0 TRANTO NPAR13 = 0 BY LAMCOM;
IF NPAR22 > 0 TRANTO NPAR22 = 0 BY LA MCOM;
IF NPAR23 > 0 TRANTO NPAR23 = 0 BY LAMCOM;
IF NPAR24 > 0 TRANTO NPAR24 = 0 BY LAMCOM:

.

Figure IB

U.S. Patent May 7, 1991

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r

Sheet 3 of 62 5,O 14,220

U.S. Patent May 7, 1991 Sheet 4 of 62 5,0 14,220

U.S. Patent May 7,1991 Sheet 5 of 62 5,(14,220

U.S. Patent May 7, 1991 Sheet 6 of 62 5,O 14,220

System
404

r
Computer I/O Devices

406

408

CPU Memory
410

ALU Registers

Figure 4B

U.S. Patent May 7, 1991 Sheet 7 of 62

8
/
P

5,014,220

U.S. Patent

SUBCOMPONENTS: A,B
INTRA-SUBCOMPONENT STRUCTURE:
A-> INPUT X; OUTPUT q;
B-> INPUT Q; OUTPUT y;

May 7, 1991

I h

Sheet 8 of 62 5,014,220

COMPONENT NAME: SYSTEM PARENT COMPONENT: EXAMPLE 1

FUNCTIONAL SPECIFICATIONS: I INPUTx; OUTPUTy;

I i

COMPONENT NAME: A

FUNCTIONAL SPECIFICATIONS:
INPUT x; OUTPUT q;

PARENT COMPONENT: SYSTEM

SU8COMPONENTS: P I), VOTER

FA P(i) INPUT x; OUTPUT w I;
V O t E k FA (P(I): INPUT w i; OUTPUT q;

INTRA-SUBCOMPONE lJ T STRUCTURE:

COMPONENT NAME: P

FUNCTIONAL SPECIFICA TIONS:
INPUT x; OUTPUT w;

FAILURE MODES:
NO-OP: w:(n)
8A D: w :(&)

PARENT COMPONENT: A

I COMPONENT NAME: VOTER PARENT COMPONENT: A

FUNCTIONAL SPECIFICA TIONS:

OUTPUT y -> N I ALi(w i:(n))
y = t / F h o t , w i:(An):#(w I = t) > #(w I = z)

COMPONENT NAME: B

FUNCTIONAL SPECIFICA TIONS:
INPUT q; OUTPUT NS(q);

FAILURE MODES:
NO-OP: y:(n)

PARENT COMPONENT: SYSTEM

Figure 4F

U.S. Patent May 7,1991 Sheet 9 of 62 5,014,220

502

h 3

Computer ST 514 506

CPU 572

ALU Register I

508
i

I 4
I ' I I

Figure 5A
530
J

532 Computer ,

I
CPU

534

4-
Memory TI

536 I

544

Device 7

Device 2

Device 3 Y
Figure 5B

7 7
I

576
I

Computer

CPU

CPU

4 \ b Device 5
564

I
Figure 5C

574

U.S. Patent May 7, 1991 Sheet 10 of 62 5,014,220

U.S. Patent May 7, 1991 Sheet 11 of 62 5,014,220

h

U.S. Patent May 7, 1991

og

b .
I
L .
I

I .

b
.

1 . . .

I-4

E

1

0
CI

8
8
E

L

..

..

%-

Sheet 12 of 62 5,014,220

U.S. Patent May 7, 1991 Sheet 13 of 62 5,014,220

/ 902

904
900 Figure9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

910

Output Results To
Reliability Model

v
/ -

1 3 ” (End >

c-

,

916 I 918 I
I

I
I
I

I
I i

I I /
RMAS c Analyze

I Setup Component

I

- -1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

U.S. Patent

b

May 7, 1991

Intermedlate
Level

Analysis

Sheet 14 of 62

91 6 RMAS Setup -
Figure IO

Put Condltion
on Base List

Figure 11

1104

Lowest Level
Analysls

5,O 14,220

U.S. Patent May 7, 1991 Sheet 15 of 62 5,014,220

L owest L eve/
An8lysis

Figure 12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I
I
I

c-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1208

/
I

I

Add To
List To

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
1
I
I
I
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I

U.S. Patent May 7, 1991 Sheet 16 of 62 5,O 14,220

1222

1320 1318

Change Transitions Thus
Add This Condition Far Returned For AI1 Clauses
to List of Transition -b of Output characteristics

I I Accordlnl to List of
Tmnsitior

\ / I

/t 1304 I 1322

Y Do Not Analyze
Conditions in Case

3

1324

Add No-Fault
Transition

8 1308

Changes

U.S. Patent May 7, 1991 Sheet 17 of 62 5,014,220

7326

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
b""-"l

I

I
I
I
I

I

7376 I

Add Condition I -+ Changes to Each I

I
I
1
I
I
I I

AnaF Transition Returned Cond tion

US. Patent

Input
Characteris tics

L

May 7, 1991

Condition

Sheet 18 of 62

7374

I 7404 I

State
Conditions

5,014,220

Figure 14

U.S. Patent May 7, 1991 Sheet 19 of 62 5,014,220

Retrieve Transition
from Local Reliability
Model that Reflects

State Change

1404 -

1504

State Conditions (-4

Add Conditlon of
"Analyze Corn onent"

Process to LP 1st of
Logicals d

Move Condition
From Future to

Past List

1508
/

Add State and 1506
All Component

Inputs to
Base List

I

Figure 15

U.S. Patent May 7, 1991 Sheet 20 of 62 5,014,220

Figure 16
Move Condition
From Future to

Present List

1606

1610

/

\ - / I
1

Move Condition From
b Present to Past

Conditions Llst

Input
Predicate

1614

*
Move Condition From

b Present to Past
Conditions Llst

Input
Predicate

b is a Predicate Transition
&hCtOV

Effects

U.S. Patent May 7, 1991 Sheet 21 of 62 5,014,220

Cond AnaF tion
(COl) -

1610
4

1702
Add Representation /

to Future
Conditions List

Add Transitions
Returned to
Contributory

Transaction List

1612

4
Pr rt icates

1802

Look Up COI
for Predicate

Analyze Condition

Representation)

1706
Move Old and New

Representation
Conditions to Past

Conditions List -

Figure 17

1804
1

Add Condition to
List of Conditions

to Analyze

Transitions Found
According to

Predicate Model

Figure 18

U.S. Patent May 7, 1991 Sheet 22 of 62 5,014,220

Figure 19

Determine Which 1902
Component 1406

1903 Outputed this
Characteristic

--,--- w -,--,---- >-- -------- -.d ---.I

I

1918

-b

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

U.S. Patent

Replace Condition
in Parent's OCD

with OCD for
Condition

May 7, 1991

/

Sheet 23 of 62

Option I (Combination

Define Conditlon
as Logical = O C D

for Condition

5,014,220

Figure 20

U.S. Patent May 7, 1991 Sheet 24 of 62 5,014,220

8
q
P
Q
c

0 P
I I

US. Patent May 7, 1991

@ 2270

Search Key
Is COI

and Violated in

Add to Transifion
According to

Detracfoty Rule
of Predicate Model

Sheet 25 of 62

fmm
n

5,014,220

6- 2224

From
m'

Figure 2282

U.S. Patent May 7, 1991 Sheet 26 of 62 5,0 14,220

1 I---- :I I

I
I
I s r

S I -1 a\ I

I
I I ! f’”

U.S. Patent May 7, 1991 Sheet 27 of 62 5,014,220

Intermediate
(Sub function) For This Level Level Analysis

2302 v Figure 23

2324

I
I
I
I
I

4
2306

2322

Add to I List of ciauses

\ /

I DNF
22

I
I
I
I
I
I
I
I
I
I
I
I

U.S. Patent May 7, 1991 Sheet 28 of 62 5,014,220

2 z Figure 24A

2420
2418

Add Llst of Changes to
Transltlons Thus Far

Returned for All Clauses
of Output Characterlstlc

Add Thls Condltlon
to ~1st of Transltlon +

Changes

4

2422

r

Do Not Analyze
Conditions in
thls Clause

2424

Add No-Fault
Transltlon

wes I

8 2408

U.S. Patent May 7, 1991 Sheet 29 of 62

Figure 24B

2426

Add NO- Fault
TianSitiOn

v Analyze
Intermediate

Level Clauses

5,O 14,220

U.S. Patent May 7, 1991 Sheet 30 of 62 5,O 14,220

Figure 25

I
I
I
I
!

I
I
I
I For

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f

Analyze
Subcomponent

Condition

Add to List of
Parent Input

Conditions Analyzed

I

251 4

Add List of Changes to
Tr8nsitions Thus Far

Analyze Returned for All Clauses
of Output Ch8mCteriStiC Condition
A - - - _ A) - - 1- -?*I--

I nccommg ro I ransirion I Changes

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

U.S. Patent May 7, 1991 Sheet 31 of 62 5,014,220

Figure 26

.---------
I
I
I
I
I
I

U.S. Patent

J

Find Component
Function to Which

Unreliable Condition
Relates

May 7, 1991

2706

Sheet 32 of 62

2706

5,014,220

Process I1
(Function)

Output Results
to User Interface

Figure 27

Process I1 Subcomponent

End

Get Next
Subcom onent

From 8 ueue
for Function

Figure 28

US. Patent May 7, 1991 Sheet 33 of 62 5,0 14,220

- -
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-4

5,014,220 U.S. Patent May 7, 1991 Sheet 34 of 62

291 0 -

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I . .

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

0 Su b/Prop
3005

dL. I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 . 1

I
I
I
1
I
I
I

-1 - -

@-
Figure 30 Figure 32

U.S. Patent May 7, 1991 Sheet 35 of 62 5,014,220

3004

Figure 31

Substitute
3103

1- -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I t

I
I
1,-

I 3706

I
I

I
I
I
I
I
I \ J l l V "*** I

I
I I Sub/Prop
I
I

U.S. Patent May 7, 1991 Sheet 36 of 62 5,014,220

3306

Nil Sensitive
Propagation

1 3372

1 w I To
3108

Non-Nil Sensitive
Propagatton

t

U.S. Patent May 7, 1991 Sheet 37 of 62 5,O 14,220

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
k
I
I
I
k
I
I
I
I
I
I
I
I
I

I L 7 - I ;

I
I
I
I
I
I
I
I :@
I

I
I

I LL-

U.S. Patent May 7, 1991

I

t
I
I
I
I
I
I
I
I
I
I
I
I

: I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I

Sheet 38 of 62 5,0 14,220

I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q

U.S. Patent May 7, 1991 Sheet 39 of 62 5,014,220

(e-)” P r o p ation Flgure 35 3501 Clause lean-Up I

I
I
I
I
I

I
I
I

- - - - - - - - - - - - - - - - -
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
t
I
I
I
I
I
I
I
I

3510

A pendAND
(lest of Old

Clause)

A 3206
I
I
I 3508

-\ Ern!”)-I Remove clause

\ / v
L

I
1
I
I
I

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I

US. Patent May 7,1991 Sheet 40 of 62 5,014,220

3601 (-) 3436 Figure36

I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I 3607

Create a Clause:
Output B H (x(i):b

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
8
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I

I
I
I
I
I
I
I
I

: I
I 1 Append AND
I I
I I
I I

xfk):fQ)

I
I

I
I 3609
I 3612
I 1

X(k), k>/
Where x(k):n
is Possible I xu) with N Removed

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
1
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I

U.S. Patent May 7, 1991 Sheet 41 of 62 5,014,220

US. Patent May 7, 1991 Sheet 42 of 62 5,014,220

I
I
I
I 1

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 38

.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I

U.S. Patent May 7, 1991 Sheet 43 of 62 5,0 14,220

3312 6-J - Figure 39

3904

3908 3910

x:b = y:b
Assum tion

Ru P e

Nil Comparison
Assumption

Propa ation
Ctause lean Up

U.S. Patent May 7, 1991 Sheet 44 of 62 5,014,220

Query: Assume
x:g o y:b?

I I

Figure 40 - 3904
x:g = y:b Query: Assume

x:g o y:b? Assumption Ru
I I

Create Clause
set7 wlth B Removed

\--? / from Set 2 +
I

4010

Create Clause

from Set 2
b wlth G Removed

401 4

Create Clause

from Set 1
F wlth B Removed

4018

4

Create Clause

from Set 1
+ with G Removed

wlth Set I or Set 2 = / Ellmlnate Clauses

0 and Combine
Common Clauses

US. Patent May 7, 1991 Sheet 45 of 62 5,014,220

41 06

Create Clause

from Set 2
b with G removed

V
T' A 1 4108

I [~ / n 4 createc/ause
Set 2 with G removed \ --i- / I fromSef 1

with Set 1 or Set 2
= 0 and Combine
Common Clauses

US. Patent May 7, 1991 Sheet 46 of 62 59014 j220

b

Assumption x:b;J’‘b Rule l3T0 Figure 42A

Create Clause
with B removed

from Set 2
i

Query: Assume N
x:b = y:b

3
Y

b
Create Clause

with B removed
from Set 2

i

A 4204 4206

A Anne 421 0 / \ / ” ” 1
I

I

?ate Clause

\ / I I

I
4212

Eliminate Clause
with Sef 1 or Set 2
= 0 and Combine
Common Clauses

U.S. Patent May 7, 1991 Sheet 47 of 62 5,014,220

c

Figure 42B

AN npgend x:(n)

b AN A P r d y:(n)

U.S. Patent May 7, 1991 Sheet 48 of 62 5,014,220

I I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Eiiminate
Qucmtifiers

From Ciause

4310 4312

/ \

4312

Nii Sensitive
Propagation

f

U.S. Patent May 7, 1991 Sheet 49 of 62 5,014,220

Detect and
Correct Overlaps +
Between Output
Characterfstlcs

2914 - Phase 3

4402

Combine Clauses

Common A"rdiY utput to
Characteristlc A

4404
Eiiminate References /
to Noninput Variable

Char8Ctefistics

Detect and
Correct Overlaps

Withln Output
Characteristics -

Figure 44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
e
l
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I - - - - - - I

\\ I 1

I
I

I
I

I 1

I
I
I
I
I
I
I
I
t

I
I
I
I
I
I
I
I

I
I

I
I

t
I

I
1

I / i :

U.S. Patent May 7, 1991 Sheet 50 of 62 5,014,220

Defect and Correct

I
t
I
I

End

I
I
I
I

I 1
I I
4 I
I I
I 4
I I
I I
I I
I I
I I
I 4
I I
I 4
I I
I I
I I
I I
I I
4 4
I I
I I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I

4506

Check (/,J)

I
I
I
I
I
I
I
I
I
4
I
I
I
I
I
I
4
I
4
I
I
I
I
I
I
I
I
I
4
I
I

I
4
I
4
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
4
I
I
I
I
I
1
I
I
I
I
I

Figure 45

U.S. Patent May 7,1991 Sheet 51 of 62

4506 Figure 46 -
5,O 14,220

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:< I’ 7 to

V N 4610

Resolve
Conflicts
Between

l
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

I I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
1
I
I
I
I
I

U.S. Patent May 7, 1991 Sheet 52 of 62 5,014,220

Figure 47

U,S, Patent May 7, 1991 Sheet 53 of 62 5,014,220

Resolution #f b

fResolve Conflicts\ 4610 Figure 48

4804

Paircheck

r\ I 4806
/

I

r

4814 *
Resolution #3 b P8ircheck

-

4820

Y
Resoiution #4 4

US. Patent May 7, 1991 Sheet 54 of 62 5,014,220

Figure 49
Resoluilon #l

4904

Y Shift x:b Clause
to OCD for 8 3

N

Variable is "n *'

4906

L- r t
I Remove Variable

Characteristlc b
from g OCD

/ Shlftx:n IN

4912 1' 1
Remove Variable
Characteristlc N

from g {orb] OCD

US. Patent May 7, 1991 Sheet 55 of 62

- -
I
I
I
I
I
I
I
I
t
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

1 ' -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Resolution #2) 4806 Figure50

5006 I
I 5008

Verified I I Assunmtions I I

5,O 14,220

- - -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - J

- -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I

US. Patent May 7, 1991 Sheet 56 of 62 5,O 14,220

51 10

I- - -
I
I
I
1
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

X:C{r8/) y:d?

51 06 Y

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 51

U.S. Patent May 7, 1991 Sheet 57 of 62 5,014,220

Figure

I

I
I
I
I

I
I
I

Rem0 ve Variable
from Chosen OCD

I
I

52

-
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I
f
I
I
I
I
I
I
I
I
I
I
I
I
I

US, Patent May 7, 1991 Sheet 58 of 62 5,014,220

I I 5304 t
I Query:

Assign %
for each OCD

I

5306

I Note % For
Failure Made
Calculation

I 5370

Output to User:
Must Make a %

I 5312

~ Resolution

U.S. Patent May 7, 1991 Sheet 59 of 62 5,014,220

- - -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 1'
I 1

Figure 54

U.S. Patent May 7, 1991 Sheet 60 of 62 5,014,220

B or Ci8use B

f
Remove the Ciause

that is 8 Subset
of the Other

Figure 55

U.S. Patent May 7, 1991 Sheet 61 of 62 5,O 14,220

t

U.S. Patent May 7, 1991 Sheet 62 of 62 5,014,220

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t

-l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
1
I
I
1
I
t
I
I
I
I
I

5,O 14,220
1 2

puter system then generates control laws which are
used to control the surface actuators. Reliability of
components in prior systems was largely based on expe-

The invention described herein was made in the per- rience, wherein block diagrams of components are man-
formance of work under NASA Contract No. NASI- 5 ually mapped for each individual component. In com-
18099 and is subject to the provisions of Section 305 of plex systems, the time required to generate a reliability
the National Aeronautics and Space Act of 1958 (42 model often exceeds the allocated time for finalizing a
U.S.C. 2457). system architecture, as noted above.

SUMMARY OF T H E INVENTION F I E L D OF THE INVENTION
This invention relates to the field of reliability analy- Briefly described, the present invention contemplates

sis in complex systems and more specifically to a a reliability model generator which automatically gen-
method and means of automatically generating a reli- erates a composite reliability model for a system of
ability model for use by a reliability evaluation tool. virtually any complexity. The reliability model gener-

15 ated by the present invention may then be analyzed by
existing reliability analysis tools. The reliability model BACKGROUND OF THE INVENTION
generator of the present invention includes a plurality of

RELIABILITY MODEL GENERATOR

10

Reliability analysis can be defined as the analysis of
events that contribute to the occurrence of undesirable
conditions, and the application of probability theory to
determine that the likelihood of these undesirable con-
ditions falls within acceptable limits. In other words,
reliability analysis provides a statistical basis for making
decisions as to the relative safety or usefulness of a
particular device or system.

Reliability analysis is especially important in complex
systems such as flight control systems in aircraft as
failure of a particular component or subsystem could
cause the destruction of an entire aircraft or failure of a
mission. As aircraft have become more sophisticated,
control systems have become more vital to the opera-
tion of these aircraft. The use of digital systems and
redundancy management schemes to satisfy flight con-
trol system requirements of high performance aircraft
has increased both the number of implementation alter-
natives and the overall system design complexity. Con-
sequently, a comprehensive reliability analysis of each
candidate architecture becomes tedious, time-consum-
ing and costly. Current methods for reliability analysis
are discussed generally in a paper entitled "Methods for
Evaluating Integrated Airframe/Propulsion Control
System Architectures," Cohen, Lee and Palumbo,
NAECON 87, vol. 2 (May 1987). pp. 569-575.

Currently, evaluation tools exist to aid in the analysis
process. Given system reliability models such as fault
trees or Markov Models, these tools quantify system
attributes such as mean time between failures and com-
ponent vulnerabilities for flight safety, or some other
reliability condition.

To define the reliability model that serves as input to
an evaluation tool, a failure mode effects analysis
(FMEA) of the candidate system must be performed
manually to determine the effects of component failures
on the system. For advanced avionics systems incorpo-
rating complex redundancy management schemes, this
can involve exploration of system component interrela-
tionships which approaches combinatorial explosion.
Using known reliability techniques, it is nearly impossi-
ble to completely analyze the reliability of a system
before the system has been finalized and implemented.
Furthermore, since current reliability models are gener-
ated manually, errors may be entered into the evalua-
tion process which may not be discovered until well
after the design is finalized.

In modern fault tolerant systems, the interrelationship
between components are too complex to model. For
example, modern aircraft employ multiprocessor real
time computer systems which control the surface of the
aircraft in flight based on inputs from sensors. The com-

low level reliability models which represent the reliabil-
ity characteristics for low level system components.

20 The interrelationship of said low level models is defined
via a system architecture description, and the present
invention aggregates the low level reliability models
into a single reliability model based on the desired sys-
tem configuration. The present invention further in-

25 cludes means for manually inputting reliability para-
menters (i.e., failure rates) for individual components,
and automatically generating the low level reliability
models based on the user defined reliability parameters
for individual components.

Accordingly, it is an object of the present invention
to provide a method and means of automatically gener-
ating a reliability model for a system or component,
regardless of the complexity of the system or compo-
nent.

It is another object of the present invention to pro-
vide a reliability model generator which can generate
models for a plurality of system configurations using the
same set of component descriptions.

It yet is another object of the present invention to
40 improve the fidelity and accuracy of reliability models

used by reliability tools.
It is still another object of the present invention to

reduce the time required to generate reliability models.
It is another object of the present invention to auto-

45 matically generate local reliability models for individual
components based on user defined parameters.

It is another object of the present invention to auto-
matically perform a failure mode effects analysis
(FEMA) which is necessary in defining a reliability

BRIEF DESCRIPTION OF T H E DRAWING
These and other objects may be completely under-

stood through the description below and the accompa-

FIG. 1A is a block diagram showing the environment

FIG. 1B is a block diagram showing a typical reliabil-

FIG. 2 is a block diagram showing the components of

FIG. 3 is a block diagram detailing the interrelation-

FIG. 4A is a block diagram showing one possible
65 system which may be analyzed in accordance with the

FIG. 4B is an internal representation of the hierarchi-

30

35

50 model.

55 nying figures of drawing in which:

of the present invention.

ity model input to ASSIST.

the present invention.

ship of the components of the present invention

M)

present invention.

cal relationship between the components of FIG. 4A.

5,014,220
3

FIG. 4C is a block diagram showing a building block
representation of a plurality of components in a system.

FIG. 4D is a block diagram of a building block repre-
sentation which may be analyzed in accordance with
the present invention.

FIG. 4E is an internal representation of the hierarchi-
cal relationship between the components of FIG. 4D.

FIG. 4F is a building block description of the system
shown in FIG. 4D.

FIGS. SA-C are system diagrams showing several
possible system definitions which may be configured
with the building blocks referred to in FIGS. 4A
through 4E.

FIG. 6 is a diagram showing the hierarchical struc-
ture of the reliability model aggregation system.

FIG. 7 is a block diagram showing the hierarchical
structure of the local model generator.

FIG. 8 is an illustration of the input/output structure
of the reliability model aggregation system of the pres-
ent invention.

FIG. 9 is a flow diagram detailing the overall opera-
tion of the reliability model aggregation system of the
present invention.

FIG. 10 is a flow diagram detailing the RMAS setup
routine of the present invention.

FIG. 11 is a flow diagram detailing the analyze com-
ponent subroutine called by the subroutine of FIG. 9.

FIG. 12 is a flow diagram detailing the lowest level
analysis subroutine called by the subroutine of FIG. 11.

FIG. 13A is a flow diagram detailing the operation of
the check lowest level clause-type subroutine called by
the subroutine of FIG. 12.

FIG. 13B is a continuation of the subroutine of FIG.
13A.

FIG. 14 is a flow diagram detailing the operation of
the analyze condition subroutine called by the process
of FIG. 13B.

FIG. 15 is a flow diagram detailing the operation of
the state conditions subroutine called by the process of
FIG. 14.

FIG. 16 is a flow diagram detailing the operation of
the input characteristics subroutine called by the pro-
cess of FIG. 14.

FIG. 17 is a flow diagram detailing the operation of
the representation change subroutine called by the pro-
cess of FIG. 16.

FIG. 18 is a flow diagram detailing the operation of
the input predicates subroutine called by the process of
FIG. 16.

FIG. 19 is a flow diagram detailing the operation of
the simple input predicate subroutine called by the pro-
cess of FIG. 16.

FIG. 20 is a flow diagram detailing the operation of
the option 1 combination subroutine called by the pro-
cess of FIG. 19.

FIG. 21 is a flow diagram detailing the operation of
the option 2 subroutine called by the process of FIG. 19.

FIGS. 22A, 22B1, and 22B2 are flow diagrams detail-
ing the operation of the Find Detractory Transitions
subroutine called by the operation of the subroutine of
FIG. 16.

FIG. 23 is a flow diagram detailing the operation of
the intermediate level analysis subroutine called by the
process of FIG. 11.

FIG. 24A is a flow diagram detailing the operation of
the check intermediate clause type subroutine called by
the process of FIG. 23.

4
FIG. 24B is a continuation of the subroutine of FIG.

24A.
FIG. 25 is a flow diagram detailing the operation of

the analyze intermediate level clauses subroutine called
5 by the process of FIG. 248.

FIG. 26 is a flow diagram detailing the operation of
the analyze subcomponent condition type subroutine
called by the process of FIG. 25.

FIG. 27 is a flow diagram which shows an overview
10 of the operation of the local model generator of the

FIG. 28 is a flow diagram of the process I1 subroutine

FIG. 29 is a flow diagram of the process L1 subrou-

FIG. 30 is a flow diagram detailing the operation of
the phase 1 subroutine invoked by the process of FIG.
29.

FIG. 31 is a flow diagram detailing the operation of
20 the substitute/propagate subroutine invoked by the

process of FIG. 30.
FIG. 32 is a flow diagram detailing the operation of

the substitute subroutine invoked by the process of
FIG. 31.

FIG. 33 is a flow diagram of the propagation subrou-
tine invoked by the process of FIG. 31.

FIGS. 34A, 34B1 and 34B2 are flow diagrams detail-
ing the operation of the nil-sensitive subroutine invoked
by the process of FIG. 33.

FIG. 35 is a flow diagram detailing the operation of
the propagation clause cleanup subroutine invoked by
the process of FIG. 34B1.

FIG. 36 is a flow diagram detailing the operation of
the nil-sensitive create bad clauses subroutine invoked

35 by the process of FIG. 34B1.
FIG. 37 is a flow diagram detailing the operation of

the non-nil-sensitive propagation subroutine invoked by
the process of FIG. 33.

FIG. 38 is a flow diagram detailing the operation of
40 the non-nil-sensitive create bad clauses subroutine in-

voked by the subroutine of FIG. 37.
FIG. 39 is a flow diagram detailing the operation of

the condition propagation rules subroutine invoked by
the process of FIG. 33.

FIG. 40 is a flow diagram detailing the operation of
the x:g= y:b assumption subroutine invoked by the pro-
cess of FIG. 39.

FIG. 41 is a flow diagram detailing the operation of
the x:g= y:g assumption subroutine invoked by the pro-

FIG. 42A is a flow diagram detailing the operation of
the x:b=y:b assumption subroutine invoked by the pro-
cess of FIG. 39.

FIG. 42B is a flow diagram detailing the operation of
5 5 the nil comparison assumption subroutine called by the

process of FIG. 39.
FIG. 43 is a flow diagram detailing the operation of

the phase 2 subroutine invoked by the process of FIG.
29.

FIG. 44 is a flow diagram detailing the operation of
the phase 3 subroutine invoked by the process of FIG.
29.

FIG. 45 is a flow diagram detailing the operation of
the detect and correct overlaps between output charac-

65 teristics subroutine invoked by the process of FIG. 44.
FIG. 46 is a flow diagram detailing the operation of

the check (i,j) subroutine invoked by the process of
FIG. 45.

present invention.

invoked by the process of FIG. 27.

1 5 tine invoked by the process of FIG. 28.

25

30

45

50 cess of FIG. 39.

60

5014,220
5

FIG. 47 is a flow diagram detailing the operation of
the paircheck (i,j,k,l) subroutine invoked by the process
of FIG. 46.

FIG. 48 is a flow diagram detailing the operation of
the resolve conflicts subroutine invoked by the subrou-
tine of FIG. 46.

FIG. 49 is a flow diagram detailing the operation of
the resolution #1 subroutine invoked by the subroutine
of FIG. 48.

FIG. 50 is a flow diagram detailing the operation of
the resolution #2 subroutine invoked by the subroutine
of FIG. 48.

FIG. 51 is a flow diagram detailing the operation of
the interactivity verified assumptions subroutine in-
voked by the processes 5004, 5008 of FIG. 50.

FIG. 52 is a flow diagram detailing the operation of
the resolution #3 subroutine invoked by the process of
FIG. 48.

FIG. 53 is a flow diagram detailing the operation of
the resolution #4 subroutine invoked by the process of
FIG. 48.

FIG. 54 is a flow diagram detailing the operation of
the detect and correct overlaps within output charac-
teristics subroutine invoked by the subroutine of FIG.
44.

FIG. 55 is a flow diagram detailing the operation of
the resolve conflicts within subroutine invoked by the
process of FIG. 54.

FIG. 56A is a flow diagram detailing the process L2
subroutine invoked by the process of FIG. 29.

FIG. 56B is a continuation of the subroutine of FIG.
56A.

D E T A I L E D DESCRIPTION OF T H E
INVENTION

FIG. 1A is a block diagram showing the environment
of the present invention. The present invention provides
a reliability model for use by a reliability analysis tool.
Reliability analysis can be defined as the analysis of
events that contribute to the occurrence of undesirable
conditions, and the application of probability theory to
determine that the likelihood of these undesirable con-
ditions falls within acceptable limits. Undesirable condi-
tions are defined as a nonfulfillment of the system re-
quirements being supported by a candidate architecture
(e.g., loss of critical flight control functions). Further-
more, these conditions are a manifestation of compo-
nent failures propagated through the interrelationship
between system components. Therefore, to determine
the sequence of component failures that contribute to a
particular undesirable condition, a Failure Mode Effect
Analysis (FMEA) is performed that traces the effects of
Component failures according to component interac-
tions. For highly reliable systems, additional functions
are incorporated into the architecture for failure detec-
tion, isolation, and recovery (FDIR). FMEA must iden-
tify these FDIR mechanisms and analyze their effects
on overall system reliability. Another critical aspect of
FMEA is concerned with the effects of multiple failures
on the system and the effects of nearly simultaneous
failures-a particular state of vulnerability in which a
second failure may occur before the system can recover
from the first failure. These time dependencies contrib-
ute to the difficulty of an accurate reliability analysis.

Once an analysis of critical failure modes is complete,
a reliability model incorporating these characteristics is
defined. The reliability model is then solved by an eval-
uation tool. One evaluation tool which may be used in

5

10

15

20

25

30

35

40

45

50

5 5

60

65

6
association with the present invention is the Semi-Mar-
kov Unreliability Range Evaluator (SURE), developed
by NASA. A system in SURE is defined as a state space
description: the set of all feasible states of the system,
given an initial state. State transitions, in SURE, de-
scribe the occurrence of faults and fault recovery ac-
tions that cause the system to change from one state to
another. Given the state space description, including an
identification of the initial state and those states that
represent an unreliable system, S U R E computes the
upper and lower bounds on system reliability and pro-
vides an enumeration of all system failures. The se-
quence of component failures that contributed to each
system failure is also identified.

An intei-face to SURE is provided by the Abstract
Semi-Markov Specification Interface to the SURE
Tool (ASSIST): a tool to aid in the specification of the
reliability model. Input to ASSIST comprises a state
space vector representing the attributes of the system.
The failure modes and FDIR attributes are described to
ASSIST as transitions in the form of logical statements.
Each transition describes (in terms of the state space
vector elements) a logical condition under which a
change to the system occurs. The undesirable condi-
tions, called death states, are identified by logical rela-
tionships among the state vector elements. From this
specification, the SURE model is generated and solved.
An example of an ASSIST description is shown in FIG.
1B.

Despite the user-friendly front-end to S U R E pro-
vided by ASSIST, modeling expertise is needed to effi-
ciently describe the reliability attributes in terms of a
state space vector,.”death” conditions, and transitions.
In addition, if a model is not carefully defined, the state
space for the system may culminate in an explosion of
states that will require excessive computing resources to
solve and validate the model.

The Reliability Model Generator of the present in-
vention aids in analyzing the effects of component fail-
ures on other components in the system and outputs a
reliability model which may be in the ASSIST syntax.
The present invention may also generate reliability
models which are compatible with other types of reli-
ability analysis tools. The reliability model then can be
examined by the user or inputted to ASSIST and SURE
to compute the reliability metrics.

In addition to the mechanics of reliability analysis,
several environmental attributes are provided. Reliabil-
ity analysis is performed at all phases of the design
process. Consequently, models are often built incremen-
tally, starting with limited or cursory knowledge of
basic functions and critical failure modes, adding func-
tional information and failure modes as implementation
details become available. At any phase of the analysis,
basic units of the architecture are identified, and failure
modes postulated for them. These units may correspond
to a physical hardware device or may refer to assem-
blies of units for which composite failure modes are
identified. The units have been referred to in literature
by various nomenclature including systems and subsys-
tems, elements and subelements, modules and sub-
modules, assemblies and subassemblies, components and
subcomponents, structures and substructures, parts, etc.
In the context of the present invention, each basic unit
of the architecture is defined as a component. Compo-
nents may consist of subcomponents, which themselves
may be made up of other subcomponents. At some level
of analysis, there is an identification of the highest level

5,014,
7

component and the lowest level subcomponents, and
some multilevel hierarchy of subcomponent definition
in between.

Failure modes are identified with the lowest level
components. At level of design being analyzed, assump- 5
tions are made concerning the level of specification
below this lowest level. For example, a multiprocessor
system may define each processor as the lowest level
component of the system with a single failure mode.
Analysis at this level makes assumptions about the oper- 10
ation of the subcomponents of each processor. It as-
sumes that no other failures of the processor can be
manifested through interaction among a precessor’s
subcomponents. In theory, the more detailed the level
of analysis, the more confidence the analyst has in the 15
results. However, as the analysis includes more and
more components at increasing levels of detail, the in-
teractions among components through which failures
are manifested become too numerous to easily analyze.

divided into sets of components. The components in
each set are analyzed separately at a detailed level (Le.,
several levels of subcomponents), from which critical
failure modes are ascertained. Failure modes of subcom-
ponents are combined according to their severity and 25
common effects on a higher level component. These
failure modes are used to define a model of the compo-
nent at the higher level. This component then becomes
a lowest level component in a new aggregate model that
also accounts for dependencies among the sets. Such 30
incremental analysis allows detailed analysis without an
explosion of states. However, care must be taken in this
abstraction technique to ensure that an analyst does not
overlook failure mode combinations within and be-
tween component sets that have a more severe effect on 35
the system than identified. The credibility of the result-
ing reliability analysis is only as good as the validity of
the assumptions made in the analysis. All assumptions
must, therefore, be well understood.

describe the function, the failure characteristics and the
structural relationship of the components. The building
block definitions describe these characteristics in a hier-
archical format which is shown in FIG. 4E. In systems
which use components repetitively, the building block 45
definition for the component need only be generated
once and the building block definition may be reused as
many times as necessary.

In prior systems, it is necessary to manually generate
the description of each component every time the com- 50
ponent appears in the system. This technique is ex-
tremely slow and manually generated descriptions are
susceptible to errors. In the present invention, since the
same building block definition may be reused, it is only
necessary to edit or modify one definition for each type 55
of component in the system and if an error is discovered
or if it is necessary to refine the definition, only a single
definition must be modified for each type of component.
Building block definitions are discussed in more detail

Once the building block definitions 102 are finalized,
the reliability model generator 104 processes the defini-
tions for any desired system configuration. The building
block definitions 102 and the reliability model generator
104 are described in more detail in conjunction with the 65
Figures of below. Once the building blocks are pro-
cessed, the reliability model generator 104 outputs a
reliability model 106 which can be analyzed by a preex-

To manage the analysis complexity, a system may be 20

In the system 100. a plurality of building blocks 102 40

in conjunction with FIGS. 4A through 4E. 60

,220
8

isting reliability evaluation tool 108 to produce the
model results 110. One existing reliability evaluation
tool which is compatible with the reliability model
generator of the present invention is referred to as the
SURE system and is described in detail in ir publication
entitled “The SURE Reliability Analysis Program”, by
R. W. Butler, NASA Technical Memorandum 87593,
February 1986. Currently, reliability models are gener-
ated manually with a tool referred to as ASSIST which
is described in detail in a publication entitled “ASSIST
User‘s Manual,” by S. C . Johnson, NASA Technical
Memorandum 87735, August 1986. The reliability
model generator of the present invention produces a
reliability model in the ASSIST syntax and is fully
compatible with SURE. An illustration of the ASSIST
syntax is shown in FIG. 1B.

Referring now to FIG. 2, the reliability model gener-
ator 104 comprises two main subsystems referred to as
the model builder 202 and the model reducer and en-
coder 204. The model builder 202 comprises two sub-
systems referred to as the reliability model aggregation
system (RMAS) 208 and the local model generator
(LMG) 206. The model builder 202 generates an unen-
coded reliability model 210 based on information con-
tained in the knowledge bases 216 and 214. The inputs
102 consist of two knowledge bases 214 and 216 which
provide a specification of the functional and structural
characteristics of the system, respectively, and identify
the failure modes for the components. Information may
be stored and modified in the knowledge bases 214, 216
through a user interface 218 which may be any type of
well-known computer terminal arrangement.

The knowledge base 214 is referred to as the building
block definition (BBD), and it represents the set of com-
ponents from which a candidate configuration may be
designed. Associated with each component is a func-
tional description that describes its behavior indepen-
dent of any configuration. Once the building block
definitions have been defined in the BBD 214, the user
defines a candidate configuration or system definition
(SYSD) in the knowledge base 216. Each component in
the SYSD 216 is an instantiation of the component con-
figuration defined in the BBD 214. The SYSD 216 de-
tines the interconnections between the component in-
stantiations. The distinction between the SYSD and
BED will be further described below.

The model builder 202 produces a reliability model
210 which is further processed by the model reducer-
/encoder 204 which converts the output of the reliabil-
ity model 210 to a format 106 which is compatible with
the reliability analysis tool 108. The BBD 214 also pro-
vides failure rates to the reliability analysis tool 108 to
be used in analysis, as indicated by block 220.

Referring now to FIG. 3, the model builder 202 con-
sists of two complementary tools: the Local Model
Generator (LMG) 206 and the Reliability Model Ag-
gregation System (RMAS) 208, which may be used
separately or in conjunction. The Local Model Genera-
tor 206 traces the effects of lowest level component
failure modes on other components in the system by
following the interconnection description of the com-
ponents which is defined in SYSD 206 and the func-
tional description of the components described in the
BED 214. For each of the lowest level components in a
system, the Local Model Generator 206 defines a local
reliability model.

Each local reliability model. which is described in
detail in conjunction with FIGS. 27 to 56, defines for

5,014,220
9 10

the components of a desired system, all output effects as nition may continue to the most detailed level, such as
a function of the states of the components (i.e., failure gates or transistors, which may be analyzed.
modes) and the characteristics of the input to the com- FIG. 4C shows an example of a BBD specification for
ponents (e.g., corrupted and noncorrupted inputs). a component 470, designated A, which may be a sub-
component functions, failure modes, and local reliabil- 5 component of the system 402 of a completely different
ity models will be described further below. architecture than the one represented in FIGS. 4A and

The reliability model aggregation system 208 may use 4B. FIG. 4C illustrates the syntax Of an intermediate
as input, the local reliability models, which are created level component in the BBD. Component 470 (A) is
by the LMG 206 o r may be entered directly by the user composed of three subcomponents: B7 c, and D. Sub-
at user interface 218, in conjunction with knowledge of 10 components B and C execute inputs in parallel based on
the interrelationship between components which is pro- inputs x and y, respectively. The outputs of B and C (q
vided by the BBD 214 and SYSD 216, to aggregate the and r, 470 respectively) are sent to subcomponent D
local reliability models into a global reliability model which Outputs the final
for the system. Thus, the local model generator 206 and The representation Of component A in the BBD is
the reliability model aggregation system 20s together I5 defined as follows. The functional flow between indi-
define a of a system which maps the lowest level vidual subcomponents is defined using a semicolon to

Once a top level reliability model 210 is defined, lelism. Parallelism among redundant components may

reducer/encoder 204 of FIG. 2, to reduce the model 20 quantifier. In the following description, each subcom-
ponent is identified in the functional flow by its name state space and encode the global model into the AS-
and 2 colons, and following the name is a specification SIST syntax from which the SURE model is built. The of its inputs and outputs. The function performed by

tool 108. An example of a reliability tool is S U R E and 25 the BBD for component A, but rather is in a
separate BBD component module for each subcompo- ASSIST discussed in conjunction with FIG. 2.

The building block descriptions 214 represent the set nent at the next lower level in the BBD hierarchy.
of components from which candidate configurations The hierarchical definition of components in the
may be designed. Each component Of the BBD has a B B D 214 corresponds to the way in which systems are
specific representation describing its behavior indepen- 3o normally characterized, by subdividing sys-

z.

failure modes into the highest level unreliable condition.

further reduction techniques are applied by the model

indicate a sequence and the @? to indicate parale

be specified by using the FA (for universal

may then be by a each subcomponent of component A is not specified in

dent Of any system configuration. The representations
define, for each component, its functions, the ways in
which the component may and the probability

tems into simpler ones, This also allows for flexibility in
analyzing systems at all levels ofdesign, thus supporting
the iterative nature of reliability analysis during the life

associated with that failure (i.e., failure rates, etc.), cycle of the design process.
which are stored in the form of data in block 220. early stages of design when few implementation

BBD Components are defined hierarchically, with decisions are known, a high-level view of the system
each level corresponding to a different view of the may be defined and analysis of critical failure modes
component. At the top level, a component is defined may be performed on this high-level view. When fur-
most generally, and at the lowest level, in the most ther design details are known and needed in the reliabil-
detail. The highest and intermediate levels define the ity analysis, su~components are defined to expand the
scope Of the function for that level, identifying the sub- functional description, and failure modes are modeled at
components involved in that function, and describing a detailed level, will be discussed in more
the way in which the subcomponents interact. detail below, this top-down structuring of component

FIG. 4A shows a typical computer system which functional requirements also allows the present inven-
may be represented in the BBD 214. It is contemplated 45 tion to trace the role a lower level component plays in
that an interactive user interface 218 allows the user to a top-]evel unreliable condition,
specify the building blocks graphically, as shown in The lowest level component definition defines the
FIG. 4A. The graphic building block may then be function of a component and any failure modes that are
mapped into an internal representation of the BBD 214 to be analyzed. The definition of the function and the
organized as a hierarchy of components such as the 50 failure modes are used by the LMG 206 to analyze any
components shown in FIG. 4B. effects of component failures on other components in

As shown in FIG. 4B, at the highest level, the system the system. Before defining the functional specification
402 is represented by two types of components, the for the lowest level components, however, it is neces-
computer 404 and the 110 devices 407. In other words, sary to introduce the concept of input and output char-
at this level, only the interrelationship between the 5 5 acteristics which is a central theme in the model builder
computer 404 and the I/O devices 407 is defined. That processes.
is, the computer is represented as a functional block Input/output characteristics are used to represent the
whose function is to receive information from and out- effects of component failure modes On information
put to I/O devices 407. To specify the internal function flowing to other components in the system. In other
of the computer 404 at the next level in the hierarchy 60 words, a component’s failure modes affect its outputs
(Le., the computer’s B B D component), the BBD 214 which are propagated to other components in the sys-
identifies two subcomponents, CPU 406 and memory tem. Only for certain cases does the effect of a failure
408. and defines their interrelationship within the com- mode identify the value of the output for a component
puter 404. The third level defines the function of the that fails. In general, only certain characteristics of the
CPU 406 and the memory elements 408, which are the 65 output can be defined. For example, total component
subcomponents of the CPU. At this level, function of failure is a commonly modeled failure mode in which
the registers 412 and the ALU 410 are identified and the expected component output is incorrect or cor-
their interrelationship is defined. This hierarchical defi- rupted in some manner. The exact value outputted is not

35

5,014,220
11 12

so evident in the analysis as the fact that the value is not signal would be GOOD (i.e., not corrupted). In another
the expected value. The output of this component may case, assume the input is corrupted and not within the
be propagated to another component, whose behavior is tolerance of the threshold. A signal whose value is
affected by the presence of this ambiguous input aberra- ”error” is then generated to another component. The
tion. The model builder 202 Processes must therefore 5 characteristic of the error signal is still G O O D (Le., not
“reason” about the effects Of corrupted input data on corrupted). However, the component receiving the
components, regardless of the value inputted. To ad- signal needs to distinguish a -GOOD” signal that
dress this, qualitative characteristics of inputs and out- indicates from a -GOOD” that indicates no

these characteristics, information may be used to define IO fore, propagating only a .,GOOD.. characteristic for
the effects of failure modes on interactions between the analyze the effect of

the error signal that resulted from a detection of a fail- components based on the following conditions:

y) as that expected under normal (not failed) conditions. that the actual “value” of the signal be propagated in
some unspecified manner whereby the value is not the addition its characteristic.

In summary, the Characteristics of GOOD, BAD, and expected value.
(3) NIL (y:n) characterizes a variable that is unde- NIL are used to represent the effects of failure modes

fined or whose value was not received on time. on interactions between components. In addition, Iikeli-
For example, a failure mode effect in which the corn- 20 hood Of Occurrence may be associated with an input

ponent’s output y is corrupted may be represented as characteristic, O r the value Propagated may be specified
y:b. with the input characteristic in order to provide com-

This characterization of inputs and outputs is suffi- patibility of input and output characteristics between
cient to describe the effects of most failure modes, How- components.
ever, there are some instances in which additional infor- 2 5 When defining a functional specification syntax for
mation is needed. the lowest level components of the BBD 214, i t is desir-

For example, consider a “threshold analyzer” corn- able that the specification of the low level models be
ponent. A ”threshold analyzer” is a component that sufficient to represent the component functionality. The
outputs the value it receives if that value is within some relationship between the information that is input to the
predefined threshold limits, and Outputs an error signal 30 component and the information that is produced by the
otherwise. The reaction of this component to an errone- component is defined by the functional specification in

input is dependent on whether the corrupted input the BBD 214 so that the effects of inputs which have
lies within rhe predefined threshold limits. However. been influenced by other component errors on the
given only that the input is corrupted in some manner, ponent function may be analyzed.
this value may not be known. Reliability analysts, under 35 The present invention provides a functional specifics-
these circumstances, estimate the likelihood of each tion which is concise and unambiguous, The functional
type Of corruption based On any One Or more Of the syntax is easy to understand and a reliability analyst is

able to specify the component function in the most following assumptions:
1. Assume the worst effect so that the overall model natural way. Furthermore, when the component func- is conservative. 4 0 .
2, Use measurement data for the failure mode that tional definition is not well defined, as in early stages of

design analysis, the functional syntax does not require a caused the erroneous output to:
a. Model each possibility, adjusting the failure rates of definition Of a specific imp’ementation.

the possible effects by their likelihood of occur- For the purposes of describing the present invention,
rence. 45 each component function may be mathematically de-

b, Model the most likely possibility and ignore ex- fined by a series Of sentences separated by a Semicolon
tremely unlikely ones, This may not be COnServa- to indicate sequential flow. Within each sentence, one
tive if the disregarded condition causes a worse or more clauses may be defined, wherein each clause
effect. represents a condition under which the function occurs.

puts* and not are propagated. Typically~ for error in order to determine its course of action. There-

signal is not sufficient

(Y’g) characterizes a (for ure (threshold In this situation, it is desirable

(2) BAD (y:b) characterizes a value as corrupted in 15

The criteria for selection of an appropriate approach 50 Each phrase is delineated by a “ 1 ” . For example:
are dependent on the failure mode that caused the effect
and therefore cannot be determined by the tool of the
present invention. To resolve this problem, the input
and output characteristics for components may be spec- 2 1 x y f 2;

ified non-deterministically such that multiple effects of a 55
failure mode are modeled, and a percentage, represent- This phrase states that the variable y will equal x if x > z
ing “likelihood of occurrence,” may be associated with and will be z if x#z.
each distinguishing effect. Associating a percentage In defining component functions, however, the user
with an input characteristic makes an assumption on the must ensure that the component is completely defined
failure mode characteristics that may not be accurate. 60 on all input combinations, and that clauses within a
Therefore, a list of such assumptions may be presented sentence d o not have overlapping conditions. For ex-
to the user with the final model. ample, the function:

As another example of the need for additional infor-
mation on inputs and outputs, in an error signal gener-

y = x l . r > z I11

ated by a threshold analyzer, assume an input is not 65 oulpul y 1 j I = 3

2 . x > o corrupted and is within the tolerance of the predefined
threshold limits. A signal whose value is “no error”
would be generated and the characteristics of the error must be defined as:

5014,220

output .v 1 ~ x = 3 [91

?. ! x > 0 and NOT (x = 3)

so that the two clauses d o not overlap.
Input variables, which may be information received

from another component, and output variables, which
are information that can be seen by another component,
are explicitly defined; for example

Ex: INPUT x:
INPUT c
OUTPUTy = x I x > I P I

Z I X # Z .

This phrase indicates that the variables x and z are re-
ceived from other components. The variable y contains
information that is sent to other components.

In addition to variables, functions may be specified to
the left of the 1 sign. For example:

Ex: ISPUT x;
INPUT 2:

OUTPUTy = [31
(4 .KZ) 1 I > z

(- 2 x) ' I ?= 2;

This series of phrases states that the output y will be the
sum of x and z if x > z and the difference of z and x
otherwise. In order to provide a more user-friendly
functional specification, macros may be defined once
and, thereafter, used by the user. For example, instead
of function [ljabove, a macro MAX may be defined:

The *'- >" symbol indicates that the MAX function is
equivalent to this sentence.

With this macro definition, function [Z] may be speci-
fied by the user as follows:

Ex INPUTx.
INPUT z;
OL'TPL'T y = MAW* 2).

However, internally, the representation of the function
would be converted to that of [2].

The Model Builder of the present invention provides
macros for the following functions:

1. logical comparators (e.g., <, >, =, f)
2. #(<set > <cond>)

which is the number of elements in <set> satisfying
condition <cond>.

which is a Boolean phrase that determines if all ele-
ments of set satisfy condition.

The function for the lowest level components is de-
fined in order to be able to trace the effects of input
characteristics through the function and define output
Characteristics. These output characteristics then be-
come input characteristics for other components. Most
functions define the output value as a result of input
values. However, for this reliability analysis, functions
must define the output characteristics as a result of input
characteristics. For example, an adder component out-
puts the sum of its inputs. The function "+" is defined

3. ALL(<set > < cond >)

5

10

15

20

25

30

3s

40

45

50

55

60

65

14
on integer inputs. However, the inputs are (g,b,n). Rules
must define output characteristics of (g,b,n) for all pos-
sible input characteristics, (g,b,n).

T w o rules for this translation are straightforward:
1. If all operands for a function are "g", then the

output of the function is "g".
2. If one or more inputs to a function are "b", and all

other inputs to the function are "g", then it can be as-
sumed that the output of the function is "b".

In some situations, it is necessary to determine the
output of a function if one input is "n" and another input
is "b". Functions of this type are categorized according
to the type of operation: either nil-sensitive or non-nil-
sensitive.

In the case of nil-sensitive (NS) operations, the output
value of the function is "sensitive" to the presence of
nonexistent inputs such that if any input is %", the
output is "n".

For example, in the case of model mathematical func-
tions (e.g., +, -, etc.) as producing no output if all
operands are not available, the rules for defining output
characteristics for nil-sensitive functions are:

OCTPUT "g" IF a11 input5 are '.g"
"ti" IF an? input is "ti"

"b" IF an) input I \ "b" and no iiiput I\ " IT"

In the case of non-nil-sensitive (NNS) operations, the
output value is not sensitive to nil input values such that
any "n" inputs are ignored in the calculation of the
output.

For example, a majority function may ignore nil o r
nonvoting inputs and determine the majority based on
the available inputs. The rules for defining output char-
acteristics for non-nil-sensitive functions are:

OCTPUT "g" IF all inputs are "g"

"ti" IF any inpui is "n"

"b" IF an> input 15 "h"
r

All mathematical functions, such as +, -, etc., are
assumed to be nil-sensitive functions. Therefore, a sen-
tence containing these operations are internally trans-
lated into NS operations. For example, the sentence in
[3] would be:

[6] Ex: INPUT .x.

INPUT z

OUTPUT y = .S.S:S(.x z)/.K > 2

.VS(X 2) x < = z:

If preferred, the user may specify functions using the
NS and NNS function directly. This type of specifica-
tion is ideal at early stages of design when functional
implementation details are not known. However, the
user may prefer to specify the function itself as in [3].
The specific rules tegarding nil- and non-nil-sensitive
functions are discussed in more detail below.

For some components, i t is sufficient to define the
function in the procedural manner described above.
However, for other components, the procedural specifi-
cation is not easily defined, nor is it necessary to define
it in such a manner.

5.0 14.220 , ,
15

For example, in describing the function of a VOTER
component, which is a component outputting the value
that is the majority of its inputs, the user may wish to
specify only that the voter outputs the majority of the
inputs. At a high level of design, it may not be known 5
what implementation is involved in the computation of
the majority. However, in defining majority in a proce-
dural format, the specification results in a nested loop-
ing structure with variables for counting the number of
occurrences of each input value. While it may not be 10
important for the analysis that the means of obtaining
the majority is defined, it is important that the definition
of a majority be 'understood' by the system.

In order to add to the flexibility of the system to
account for non-procedural functional specifications, an 15
enhancement to the specification allows the use of uni-
versal and existential quantifiers. These quantifiers may
be used to define outputs of the component in terms of
the inputs.

defined as:
As an example of this, the VOTER function could be 20

This function states that the output, y, will be nil (Le.,
no output) I f all inputs are nil, and the output, y, will be
the value oft if for all inputs not equal to nil, the number 30
of inputs equal to t will be greater than the number of
inputs not equal to t.

The procedural specification differs from the non-
procedural specification by the presence of quantifiers
in non-procedural clauses. The universal quantifier 35
specifies an attribute that is applicable to a set. The set
usually represents redundant or replicated variables.
Although similar, the universal quantifier is not equiva-
lent to the A L L ((cond)) predicate. For example, the
voter specification in [a] is redefined as: 40

[XI output ?';nil 1 ALLu(i)):nil

ou1put y = I 1 #(X(O = I) > #(.rli) = I)
A S D .ALLIr(i> NOT n) AND ALL (z < > I): 45

is not defined on all inputs (e.g., when some x(i):n), but
not ALL(x(i):n)). In other words, a simple predicate is
"checked" to verify the validity of the clause, and a
quantifier alters the inputs so that the clause is valid. For 50
this reason, the quantifier is eliminated from the final
OCD whereas all predicates remain in the final model.
Analogously, :he existential quantifier is not equivalent
to a AT-LEAST-ONE(<cond>) predicate.

voter that outputs a plurality of the inputs. A value
outputted may not be the clear majority, but there may
be a greater number of these values than any other value
inputted. This function would be specified as:

Another example of the use of quantifiers is a type of 5 5

60

191 OUTPUT ?.nil ~ ALL(.i(i>):nil

y = I

M I >

, FA z < > I. .r(i) (NOT nil)::

= f) > # (S (l > = I)
65

This function states that the output, y, will be nil (Le,,
no output) if ail inputs are nil, and the output will be the

16
inputs not equal to nil, the number of inputs equal to t
will be greater than the number of inputs equal to z.

Using a macro definition for majority, the user need
only specify:

OR

OUTPUT y = PLLl(.i(O):

Failure modes are defined as a change to or an aberra-
tion of the component function. Thus at the lowest
level, there is a definition of the component function
under normal operation and a definition of the function
or change to the function for each component failure
mode. Most failure modes are defined by a change to
the outputs produced by the component function rather
than a change to the function itself.

For example, a component X may have a failure
mode in which any outputs are corrupted regardless of
the inputs. This failure mode would be defined by speci-
fying a component state, X-BAD, whose function is
simply to output corrupted data:

OUTPCT):b IF S - B A D (lor oulpui 5)

For all failure modes, transitions are defined from a
non-failed component state. These transitions become
part of the local reliability model for the component. A
transition is defined for the failure mode as follows:

IF S-SOF TRAUTO Y-BAD b)

<failure rare>

This states that if component X is not failed (in state
X-NOF), then it may enter a failed state X-BAD
according to some probability of occurrence of the
failure mode. In other words, the system state changes
to a state in which the new state is indicated. It is as-
sumed that a component can fail only from an unfailed
state.

It is not necessary to specify the system below the
level at which failure modes are defined, since it is the
effects of component failure modes on the system that
are of interest. Conversely, if the reliability of a system
is to be analyzed given a set of failure modes, the system
components must be defined at least to the level at
which failure modes are identified.

Referring now to FIG. 4D, a block diagram of an-
other example system is shown. The system 480 in-
cludes a plurality of input subcomponents 482, 484. 488
and a voter 490 which comprise the component 492 (A).
Component 492 cooperates with component 494 on the
same hierarchical level. A typical building block func-
tional specification for the system 480, generated in
accordance with the above guidelines, is shown in FIG.
4F.

Referring now to FIG. 4F, the BBD component
description of the system of FIG. 4E is shown. Compo-
nent 480 is the root or top level component which de-
fines the system inputs and outputs (x and y , respec-
tively) the two subcomponents 492,494 [components A
and B) and their interrelationship are defined at the next
level. Component A inputs x and outputs q. Component
B inputs q and outputs y. The internal function of com-
ponents A and B is not defined at this level; rather. a

value o f t if for all values z not equal to t and for all separate BBD component details this. For component

5,014,220
17 18

A, the next level of subcomponents designates 482,484, such as that shown in FIGS. 4A and 4B. The present
488 and 490 are identified. Components 482, 484, 488 invention is adapted for use with a graphical interface to
are identified as P and correspond to redundant compo- specify instantiation of BBD components into the
nents and component 490 is identified as a voter. SYSD 216 and will allow the user to graphically select

5 the connections between components (e.g., mouse and
menu). One graphical interface which is adapted for use
with the present invention may be generated by the
K E E expert system manufactured by Intellicorp. The

Same input, x, and output a variable w. The voter 10 graphical information into an implementation of the
ponent receives all w(i) from the redundant compo- present invention in the well-known LISP computer
nents, P, and outputs a value q, which is identified as the language which is particularly useful for implementing
output of the component A also. The specifications of aspects o f t h e Present invention.
components, P, and Voter d o not specify more than Referring now to FIG. 5A, a system may be config-
their input and outputs at this level. l5 ured in the SYSD 216 as a computer system 502 at the

Component P is specified in FIG. 4F. Since p is a highest level. At an intermediate level, computer sys-
component defined at the lowest level in the BBD, two tem 502 may be defined as having a CPU 504, which
failure modes are identified. The first failure mode is communicates with memory 506 through a plurality of
called NO-OP and it specifies that when P fails in this bus lines 508 and 510. At the next level of detail, the
manner, the output w is “n”. The second failure mode 2o CPU 504 may be defined as including an arithmetic
called BAD, specifies that the output w is “b” regard- logic unit 512 and a plurality of registers 514, 516 which
less of the inputs. are coupled to memory bus lines 508 and 510 and which

The voter component is also specified in FIG. 4F. communicate with A L U 512 through bus line 518.
The function defined is equivalent to the statement Referring now to FIG. 5B, an alternate system may
shown in [9]. There are no failure modes represented for 2s be configured in the SYSD 216 as a computer system
the voter, even though the voter is a lowest level corn- 530 at the highest level. At an intermediate level. system
ponent. 530 may be defined as having a CPU 532, which com-

Component B is also specified in FIG. 4F. A single municates with memory 534 through a bus line 536, and
failure mode, NO-OP, is specified. This failure mode is 3o which communicates with a plurality of external de-
identical to the NO-OP failure mode for component P. vices 538,540, and 542 through 110 ports 544, 546, and

Referring now to FIGS. 5A-5‘2, once the building 548, respective~y.
block component definitions 214 have been defined, the Referring now to FIG. 5 c , another alternate system
user defines a candidate Configuration Or system de- may be configured in the SYSD 216 as a multiprocessor

216 is an instantiation of a component defined in the 35 diate level, system 560 may be defined as having a plu-
BBD 214. There may be several instantiations of a sin- rality of cpus 562 and which communicate with
gle BEID component in the SYSD 216‘ The SYSD 216 memory 566 through bus lines 568 and 570, respec-

that components in the BBD 214 not instantiated in the ternal devices 572 and 574 through I/o ports 576 and SYSD 216 are not included in the analysis. This allows 40 578, respectively,
system subsets to be analyzed separately, if required. Referring now to FIG. 6, given a userdefined SYSD When a component is selected for instantiation, all sub- configuration, a supporting BBD with local reliability components for that component are instantiated with it

the BBD 214. This defines the lowest level of 45 unreliable condition, models are defined for the failure

dition to be analyzed is defined with respect to the unreliable condition. The local model generator 206
highest level of the SYSD 216. By changing the highest may introduce at different levels.
and lowest level in the SYSD 216, a system may be As stated above, the SYSD defines the highest and
modeled at varying levels of detail without altering the 50 lowest level View Of the system to be analyzed, and at
BBD. This permits easy for critical failure the lowest level, local reliability models generated by
mode analysis. the L M G 206, define the effects of the component fail-

The BBD/SYSD distinction allows a functional spec- ure modes and input characteristics on the output char-
ification of components independent of their roles in a acteristics of the components. The local reliability mod-
system. Generally, the BBD 214 and SYSD 216 enforce 55 els may be defined by the user Or generated by the local
separation of function and Structure SO that alternative model generator. An unreliable condition is a definition
configurations can be analyzed simply by altering the of the state of the component at the highest level that
SYSD 216. A component’s definition may, however, constitutes an unreliable system. Therefore, the analysis
include structural constraints with respect to other tool of the present invention provides a global reliability
components that are common to all instantiations of that 60 model of a highest level unreliable condition from the
component. For example, a multiprocessor may have lowest level local reliability models.
ports that are always intended to connect to I/O de- FIG. 6 shows a hierarchy of Reliability Model Ag-
vices. By specifying these constraints in the BBD de- gregation System modules 606, 608 and 610 in which
scription of the component, an instantiation of the com- each respective module corresponds to a separate com-
ponent in the SYSD enforces these constraints, thereby 65 ponent abstraction, defined by the BBD/SYSD, begin-
disallowing improper configurations. ning at the root 606, or highest level of component

FIGS. 5A through 5C show three possible configura- description. For the purpose of describing the present
tion alternatives for analyzing a simple computer system invention, each respective RMAS module is used to

The subcomponent structure for A:

FA(P(1))::lNPUT x OUTPUT w: V0TER::FA
(P(i)):INPUT w(i); OUTPUT q;

specifies that all invocations ofcomponent p receive the K E E expert system is adapted for converting the input

scription in SYSD 216. Each component in the SYSD computer system 560 at the highest level. At an interme-

delineates the scope Of the system t’ be analyzed, such tively, and which communicate with a plurali ty of ex-

to the level at which failure modes are represented in mode1s defined at the lowest level components, and an

tion selected for analysis. The top-level unreliable con- mode and recovery transitions that contribute to the

19
5,O 14,220

20
define a reliability model for the component level that
comprises an aggregate of the lower level modules 608,
and 610, respectively. Initially, a RMAS module is in-
stantiated for the highest level component 606. Given
an unreliable condition specified in terms of an undesir-
able output defined at the highest level, RMAS module
606 identifies the intermediate level subcomponents. If
the subcomponent is an intermediate level component
also, a second level RMAS module is instantiated for
the subcomponent. Every subcomponent is identified,
and for each successive intermediate level component
abstraction, a separate RMAS module is instantiated
according to the subcomponent interdependencies de-
fined in the BBD/SYSD for the respective component
level.

If the subcomponent is a lowest level component, a
local reliability model is defined which identifies for
each output characteristic conditions:

(I) component failure modes on component outputs;

(2) erroneous input characteristics that contribute to

Each such condition is analyzed by the correspond-
ing parent component RMAS module. For failure
modes, transitions are defined explicitly in the local
reliability model for the subcomponent that failed. Each
input characteristic corresponds to an output character-
istic of some other subcomponent that interacted with
the subcomponent.

For example, in FIG. 8, the input characteristic for
component 810 (C) corresponds to the output charac-
teristic for component 808 (B). The RMAS model for
the parent component, therefore, must investigate the
model for component 808 (B) to find transitions that
contributed to its output characteristic which, in turn,
served as an input characteristic to component 810 (C).
If component B is an intermediate level component,
then, as stated above, a RMAS module 816 is invoked
for it (at the lower level in the hierarchy). This RMAS
module creates a reliability model of component B that
defines the states and input characteristics that contrib-
ute the B's output characteristic being analyzed by the
parent component.

If component 808 (B) is a lowest level component,
then its reliability model is interrogated directly. Com-
ponent 9's output characteristic may be dependent on
its state and its input characteristics, etc. At each itera-
tion of this backtracing, transitions are defined for com-
ponent state changes, and analysis of input conditions is
deferred to the component from which the input was
generated. This backtracing continues until:

I . the output characteristic being analyzed is not

2. the input of the parent component is reached, or
3. a completed cycle is detected.
Upon reaching one of these conditions, the "chain of

conditions" (Le., input/output characteristics and fail-
ure modes) found among the respective subcomponents
are aggregated into a single, local reliability model for
the parent component. The failure mode transitions
found may be changed to reflect changes to the parent
component rather than the outputs local to the subcom-
ponent that failed. Furthermore, failure recovery transi-
tions involving multiple subcomponents (and therefore,
not represented in any single subcomponent model)
may be detected. The parent's model, created in this
way, is thus an aggregation of the subcomponent mod-
els. This model is returned to the next higher level

and

the output characteristic.

derived from an input characteristic,

5

10

I5

20

2 5

30

35

40

45

50

5 5

60

65

where the tracing continues to other components in the
tree. Therefore, the reliability models are "bubbled" up
to the highest level component which defines t h e model
for the system.

Instantiation of RMAS modules proceeds in a top-
down fashion rather than bottom up. This i,s because the
focus of the global reliability model is the unreliable
condition which is defined at the highest level. If aggre-
gation were to proceed bottom-up without regard to
the high-level unreliable condition, the resulting model
may contain transitions and state space elements which
are irrelevant to the unreliable condition being ana-
lyzed.

Reliability models returned from each level in the
problem-solving hierarchy adhere to the same format.
That is, each model defines, for the component, the
characteristics of its outputs given a relationship be-
tween the characteristics of its inputs and the states of
the components (as a result of failures). Also, transitions
define changes to the component as a result of failures
or recoveries from failures (FDIR schemes).

Referring now to FIG. 7, assuming a hierarchical
description of a candidate architecture (represented in
the BBD and SYSD) in which component functions are
defined at the lowest level of description and a high-
level system unreliable condition for which the reliabil-
i ty is to be established, the present invention defines for
each of the lowest level components, a local reliability
model. Each local reliability model defines for the com-
ponent all output characteristics as a function of the
states of the component (Le., failure modes) and the
characteristics of the input to that component (e.g.,
corrupted or noncorrupted inputs).

The Local Model Generator consists of 3 processes:
one process (11) is invoked for each intermediate level
component and two processes (Ll and L2) are invoked
for each lowest level component. These are shown in
FIG. 7. Like the RMAS processes, the LMG processes
are instantiated in a hierarchy corresponding to the
components defined in the SYSD (and supporting
BBD). Initially, the highest level component module
702 (11) is instantiated. This process is involved primar-
ily with controlling the order of invocation of the other
L M G processes. Given the unreliable condition speci-
fied in terms of the function defined at this level, process
I1 identifies the intermediate subcomponents involved
in the function. Separate reasoning modules for each
subcomponent are then instantiated by process I1 in an
order according to the functional flow described in
SYSD and shown in FIG. 7.

For each successive intermediate level component
abstraction 704 and 706, process 11 is performed as in
the highest level module to identify subcomponents
involved in the function. Separate modules for each
subcomponent are instantiated by process I1 according
to the functions defined in the BBD/SYSD for that
component level.

If the first subcomponent in the function is a parent
component also (Le., has subcomponents defined in the
BBD 704), another invocation of process I1 is invoked
for it to identify the next lower level subcomponents
involved in the function.

If a subcomponent is defined at the lowest level in the
BBD where component failure modes are modeled,
process L1 is invoked for 708 and 710. Recall that fail-
ure modes are modeled as a change to the function, such
that at the lowest level. there is a functional definition
for the component under normal operating conditions

5,014,220
21

and a functional definition for each possible failure
mode. At the lowest level, where component failures
are modeled, process 712 (L1) inputs a set of possible
input characteristics received from its parent compo-
nent. For each operational state of the Component (non-
faulted and faulted mode), process 712 (Ll) traces the
effects of all input characteristics through the function
to determine the resulting output characteristics. Tran-
sitions for each possible failure mode are also defined.
Process 714 (L2) then combines failure mode states and
input characteristic conditions that cause a common
output effect, so that a single output characteristic defi-
nition (OCD) for each output characteristic is defined.
These output characteristic definitions together with
the transitions comprise the component’s local reliabil-
ity model 720 which is returned to process 11 704 of the
parent component. Process I1 passes the output charac-
teristics 722 to the subcomponent module which inputs
these characteristics. If that subcomponent is defined in
the BBD at an intermediate level, then process I1 is
invoked for it. Otherwise, Ll is invoked and a local
reliability model is defined. This depth-first trace pro-
ceeds through the hierarchy until eventually, the out-
puts of the system are reached.

The resulting local reliability models for each of the
lowest level components 720, 722 can be interrogated
by the user or given to the RMAS processes discussed
in the previous section in order to define a global model
for the system.

The following text describes RMAS modules in more
detail. Since there are several intricate details of this
process that inhibit a comprehensive description, an
overview of the tasks involved in RMAS is initially
described. The following description also includes de-
tails underlying each task.

Referring now to FIG. 8, the input characteristic for
component C corresponds to the output characteristic
for component B. The RMAS for the parent compo-
nent, therefore, must investigate the model for compo-
nent B to find transitions that contributed to its output
characteristic which, in turn, served as an input charac-
teristic to component C. If component B is an interme-
diate level component, then, as stated before, a RMAS
module is invoked for it (at the third level in the hierar-
chy). This RMAS module must create a reliability
model of component B that defines the states and input
characteristics that contribute to the component B’s
output characteristic being analyzed by the parent com-
ponent.

If component B is a lowest level component, then its
reliability model is interrogated directly. Component
B’s output characteristic may be dependent on its state
and its input characteristics.
FIG. 9 is a flow diagram which describes the high-

level function control flow of the reliability model ag-
gregation system (RMAS) 902. In the following de-
scription, the terms “process” and ”subroutine” are
used interchangeably. The term “conditional block” is
used to refer to a process step which tests a condition or
state. The term “iterative block” is used to refer to a
recursive process step wherein the step is repeated until
a group of conditions or other paramenters have been
processed. In other words, in each block which indi-
cates “for each” and then has some condition, implies
that when control returns to the block, the next condi-
tion is executed or the next element is instantiated and
the loop repeats until the last condition has returned. At

LL
that point process control exits the loop to end or to
some other designated pointer.

The RMAS 902 combines local reliability models
defined at the lowest level of the BBD into a top level

5 reliability model for the system. Upon user initiation,
RMAS enters iterative loop 904 (an iterative loop per-
forms a function for many instances of an element, such
as a variety of input and output conditions) to determine
the reliability models for each output of the top level

10 component. Iterative loop 904 includes a nested itera-
tive loop 906 which determines an output characteristic
definition for each output characteristic of the output.
Once initiated, RMAS 902 enters iterative block 908
which determines whether all outputs have been tested.

15 Once outputs have been tested, RMAS 902 enters item
910 to output the results to the reliability model 106 and
exit the RMAS. If all outputs have not been tested,
iterative block 908 takes the next output and enters item
912 to find the subcomponent that generated the output.

20 Conditional block 914 tests the output to determine
whether all output characteristics have been analyzed.
If all output characteristics have been analyzed, condi-
tional block 914 returns control to conditional block
908. If all output characteristics have not been analyzed,

25 conditional block 914 enters process 916 which initial-
izes the program environment for process 918. Process
918 is executed to determine the output characteristic
definition (OCD) for the output Characteristic.

FIG. 10 is a flow diagram of the RMAS setup process
30 subroutine 916. RMAS setup subroutine 916 is invoked

to initialize the program environment for process 918.
The environment consists of the output characteristic
currently being analyzed, and a plurality of stacks of
conditions comprising a stack of past conditions, a stack

35 of conditions scheduled for analysis called future condi-
tions, and a stack of conditions currently being analyzed
called present conditions, and a list of base conditions
which are referenced in the final reliability model and
array of logical conditions which are conditions equiva-

Once initialized, RMAS setup process 916 enters item
1004, which puts the condition on the base list referred
to in the discussion on environment above. Item 1006
then initializes the parent output characteristic defini-

45 tion to the subcomponent output characteristic defini-
tion. Control flow then returns to process 918.

Referring now to FIG. 11, once control passes to
process 918, conditional block 1102 tests the subcompo-
nent to determine if it is defined at an intermediate level

50 or at the lowest level in the BBD. If the subcomponent
is defined at the intermediate level, then process 1106 is
executed. If the subcomponent is defined at the lowest
level, then process 1104 is executed. Process 1104 deter-
mines the output characteristic definition (OCD) for the

55 lowest level analysis. Process 1106 determines the out-
put characteristic definition (OCD) for the output char-
acteristic for intermediate level analysis. While low
level analysis is done on components on the most basic
level, intermediate level analysis involves recursive

60 execution of the RMAS processes for all its subcompo-
nents thus providing a top-down hierarchical structure.

FIG. 11 describes the function and interrelationship
of intermediate and low level components. FIG. 12 is a
flow diagram which describes the lowest level analysis

65 process 1104. When invoked, item 1202 converts the
data set output characteristic definition to a sum of
products form, also called disjunctive normal form
(DNF). Processes for converting data sets to disjunc-

40 lent to a set of base conditions (base list).

5.0 14.220
23

tive normal form are well known to those skilled in the
art.

When an OCD is first reordered into disjunctive
normal form (DNF), each clause is analyzed separately.
Enforcing this ordering has several advantages that will
be discussed in more detail below. When transitions are
fmnd that contribute to a condition in the OCD, the
conditions in the OCD are sometimes changed. By
ordering the OCD in DNF form, the changes made to
a clause are localized to that clause. Further, the algo-
rithms for changing the OCD require that the OCD be
in DNF form. DNF clauses also allow detection of
cycles in the analysis. Furthermore, DNF clauses pro-
vide a uniform ordering that minimizes ambiguity.

To translate a Boolean expression into DNF form,
the following rules are applied iteratively on the expres-
sions.

where 1 delineates the clause boundaries, A and B are
individual conditions, and X and Y are subclauses or
individual conditions.

In the absence of parentheses, i t is assumed that logi-
cal OR has the lowest precedence, logical AND is next,
and Boolean comparators (<, >, =) have the highest
precedence. Therefore,

Once converted to DNF form, the loop 1204 iterates
for each clause of the output characteristic definition.
The number of clauses which are in the output is depen-
dent on the output characteristic definition. Each clause
is separated by a logical OR condition represented here
interchangeably by the symbol ”I” or the word “OR”,
after conversion to disjunctive normal form. In other
words, clauses are a series of conditions which are con-
catenated by a logical AND within a single clause. The
clauses are concatenated by a logical OR condition to
make up the output characteristic definition. The output
characteristic definition may be defined with some
characteristic good, bad or nil; together with “IF”; and
a series of clauses, wherein each clause is delineated by
the logical OR and conditions within each clause are
delineated by the logical AND.

The conditions can be either input conditions, which
are good, bad and nil, o r they can be component states,
o r they can be predicates on inputs, such as the number
of inputs that are good or that all inputs are good, predi-
cate on the input characteristics.

Block 1206 iterates for each of the output clauses in
the output characteristic definition. In the context of the
present invention, a typical number of clauses associ-
ated with an individual condition may be three or four.
When the process is completed, process control returns
to item 914. If not completed, process control then
passes to iterative loop 1208, which iterates for each

24
condition within a particular clause. In other words, a
smaller loop is invoked that is a nested loop within loop
1204. Loop 1208 is a nested loop which iterates for all
conditions within a particular clause. Therefore, a

5 clause is selected and the process defined by loop 1204
iterates all the conditions for that clause before going to
the next clause. Conditional block 1210 is invoked to
select the next clause, which is stored in a list of clauses,
to perform a precheck on the conditions. The process

10 calls a procedure block 1212, which for each condition
checks to determine whether the condition is listed on
the current list of conditions being analyzed or if it’s
listed on the past list of conditions which have already
been analyzed. If the condition being analyzed is a past

Is condition, the condition had already been analyzed at
some earlier iteration of this low-level analysis. There-
fore, the present invention confirms in 1214 whether
this condition has a logical equivalent, and if i t does,
then substituted into the clause is the logical equivalent

2o for the set of bases for that logical expression in 1216.
In some cases, when the final output characteristic

definition is completed, some conditions can be refer-
enced equivalently by other conditions. In these cases,
conditional block 1214 reduces the final output charac-

2 5 teristic definition and number of variable by substituting
some conditions for other conditions to produce a re-
duced state space model. In earlier iterations. if that
decision to substitute a logical in for the base has al-

3o ready been made, and if listed on the past condition list,
the base equivalent is substituted for the logical. Condi-
tional block 1214 therefore examines the condition type
and if it’s a logical, control then passes to process 1216,
which substitutes the logical in the base for logicals.

35 Once the substitution in the clause has been made, the
clauses are reformatted into DNF format again by pro-
cess block 1218 because, when substituted, the clause
may not be in disjunctive normal form, if there wasn’t a
logical it is not necessary to perform DNF. If it’s not a

4o logical control returns to iterative block 1210 to con-
tinue analyzing the next condition. In other words, if it
is a logical then the base equivalent is substituted for
that logical and then the clauses are reorganized by
calling the DNF subfunction 1218 which may create

45 more than one clause for that one clause. In that case,
the new clauses need to be analyzed and therefore
added to the list of clauses to be analyzed in item 1220.

Process 1218 is a DNF process which, in some condi-
tions, will generate another clause. Item 1220 then adds

50 the new clause to the clause list to be analyzed, and that
list is then added to all the lists of clauses that have to be
analyzed and control returns to conditional block 1206
to analyze each clause. When a past logical type condi-
tion is detected, process control passes to item 1216. If

5 5 a current condition type is detected in conditional block
1212, process control passes to iterative block 1206
because the entire clause doesn’t need to be analyzed.
Conditional block 1206 then passes that clause and se-
lects the next one. The iteration process continues until

60 all the clauses have been examined and all the condi-
tions within a particular clause have been analyzed,
except for the case where one of the conditions was on
the current list. If a clause is on the current list, that
clause is ignored. For all the other clauses, once the

65 conditions within a clause have been analyzed, process
control passes to process 1222 which calls the check
lowest level clause type subroutine to check the clause
type and determine for each condition within the

5,014,220
25 26

clause, the transitions that contribute to the condition in However, in some cases, because this process is itera-
the clause. tively called to trace the effects of conditions on an

For example, in the case of an input condition, such as output characteristic, and because the conditions may
the condition input being bad, process 1222 analyzes the be determined to be logicals and substituted in by the
transitions that contribute to that input being bad. The 5 bases in process block 1216 of FIG. 12, the present
transitions which contribute to an input being bad occur invention may produce a condition wherein the output
prior t o this process. This process begins with a model characteristic condition which is being analyzed may be
for a component based on the assumption that the out- substituted in to the left-hand side of the condition state-
put of the model is good if certain conditions exist. The ment. This occurs when the BBD components that
output of the model is bad if other conditions exist and ‘0 interrelate, interrelate in a cycle. By substituting condi-
the output of the model is nonexistent if still other con- tions, eventually a condition may be substituted on the
ditions exist for this component. Therefore, the present right-hand side of the output characteristic definition
invention determines, for each condition, which transi- which is the same as the condition being analyzed previ-
tions contributed to those conditions. The transitions ously because of the iterative nature of the process.
may be a part of other models for other components. l5 Cases 1 through 4 process those types of clauses in cases

By way of review, a local reliability model, for each wherein, in an iterative cycle, a condition is represented
component at the lowest level has an output character- on both sides of the output characteristic definition.
istic definition (OCD) and a set of transitions for each Case 5 is the normal case wherein there are no cycles. In
failure state of the component. Transitions are cata- other words, special consideration must be given to
logued ahead of time in the form of a table. The transi- cycles which are processed in cases 1 through 4, each
tions and the O C D are either entered by the user, or for a different type of clause.
created by the other processes such as the local model Referring again to FIGS. 13A through 13B, in con-
generator which is further described below. T h e reli- sideration of case 5, in which there is no cycle in the
ability model aggregation system employs the local 25 interaction, this type of clause is a type wherein the
reliability models as input to the RMAS system. Transi- output characteristic definition is defined in terms of
tions take the form: input characteristics and component states. In this case,

If a set of conditions are true, then there is a transition conditional block 1310 is invoked and process control
to a new set of conditions. passes to iterative block 1312. Under case 5, iterative

Conditions can also be state conditions to failure 30 block 1312 iterates for each condition in the clause and
states. In summary, once new information for a particu- it calls process block 1314 to analyze each condition in
lar input has been generated in the form of transition the clause. The function of process block 1314 is to find
data, control returns back to conditional block 1206 to transitions that contribute to the condition being ana-
analyze the next clause. Once all the clauses have been lyzed, and those transitions returned. Item 1316 changes
analyzed by loop 1206, program control returns to con- 35 the transitions returned to a list of changes created by
ditional block 914. analysis of other clauses that adhere to types 1-4. The

FIG. 12 includes two processes which are invoked by changes that are made in item 1316 will be discussed
the subroutine of FIG. 12. Items 1202 and 1218 invoke with reference to cases 1-4.
the same subroutine in alternate process steps. Referring now to case 1, conditional block 1302 de-

invoked to check the lowest level clause type. This

13. The subroutine of FIGS. 13A and 13B begins with a
conditional block 1302 which is labeled case 1. Process where <condition> is an output characteristic.
1222, check lowest level clause type, examines a valid 45 In other words, conditions were substituted such that
clause to analyze, and for each condition determines the the process is analyzing the condition which contrib-
transitions that contribute to the condition. The case uted to an output characteristic being true and in the
control conditional blocks, shown in FIGS. 13A and process of analyzing this, the process has come through
13B, analyze each clause to determine what type of a complete cycle and through the substitution of bases
clause it is and process the clauses. Case 5 is the most 50 for logicals, the condition that is being analyzed on the
often invoked case and is invoked when the conditions left side of the O C D is also represented on the right side
for cases 1-4 fail. of the OCD. The present invention determines what

Referring now to FIGS. 13A and 13B, when the conditions contributed to output x being bad, and the
process of subroutine 1222 is invoked, a series ofcondi- clause states that the output is bad when the output is
tional blocks 1302, 1304, 1306, 1308 and 1310 test case 55 bad. This indicates a cycle in which no changes oc-
type. Case 5 is the normal case, and if not detected by curred. For example:
conditional blocks 1302, 1304, 1306, or 1308, program

clause type in which the output condition characteristic
is not referenced in the clause. In this case, the output 60 This indicates there are no transitions through this
characteristic definition clause states: clause which can be analyzed to determine if x is bad.

OUTPUT condition characteristic: “IF”: (a particu- and the clause may be deleted from the final local model
lar set of conditions). which is created. In order to drop this clause and make

In case 5, these conditions d o not include the condi- the other clauses complete and correct for the output
tion of the characteristic. Normally, given an output 65 characteristics, it is necessary to NOT(condition) to any
characteristic definition: other transitions from other clauses which indicates that

this condition, x:b isn’t true in the other clauses. This is
a particular way) “AND”: inputs are good. done in item 1316.

The main process of FIG. 12 is process 1222, which is 40 tects a clause which states:

process is described in detail in conjunction with FIG. <ourput condition> IF <conditmn >

control passes to conditional block 1310. Case 5 is a x:b IF x:b

OUTPUT is good: “ I F : (Component state is failed in

27
5,014,220

- .
In case 1, the present invention can ignore the clause,

and so other clauses being analyzed through the itera-
tive loop 1204, any transitions returned through this
analysis must include NOT(condition) for the current
output characteristic condition in the transitions. Item
1318 adds NOT condition to a list of condition changes,
then the list of transitions currently identified for previ-
ously analyzed clauses is updated by item 1320. If there
are no changes, item 1320 takes no action. Item 1320
then checks all transitions that were returned prior to
this clause and makes the changes to those transitions
that were already returned. This is similar to the func-
tion of item 1316, with the difference being that it does
it to all prior transitions, whereas item 1316 processes
new transitions. When complete, all transitions for all
clauses will have been updated with new changes.

Case 2 is detected by conditional block 1304. Case 2
is similar to case 1 and is defined by the clause:

output <condition> IF <condition>

transition list. In generating a combined model for a
parent component, both an output characteristic defini-
tion and a set of transitions are generated. In the present
process, output characteristic definitions are continu-

5 ously modified to encompass all the subcomponents
wherein the transitions are also continuously modified.

Case 4 is detected by conditional block 1308 and is
defined by the following clause:

10 OUTPUT <condition>lF NOT (<condition>)

A K D <other condirions>

The relationship between cases 2 and 3 is analogous
15 to the relationship between case 1 and case 2 except that
. in case 4 the other conditions must be analyzed. In other

words, a transition contributed to the other conditions
which must be true for clause to transition to the new
condition. In this case, after. statement 1326 process

20 control passes to conditional block 1312 to analyze each
condition by calling process block 1314 to analyze each
condition iteratively. Because each condition must be

A S D <other uonditiona>

<condition, is an output characteristic and
<other conditions> contain conditions that does not
include the output Characteristic.

This is

the Same result is still pro-

analyzed because a change was detected, the process
control passes from Item 1326 to the loop 1328 which

Referring now to FIG. 14, the subroutine 1314 is

analyses conditions within a clause. Initially, condi-
tional block 1402 determines condition type. There are

30 two general types of conditions, either input conditions
or component statements, which are failure statements.
If an input condition is detected, then process 1406 is
invoked. Process 1406 locates transitions which contrib-
ute to a particular input characteristic being analyzed.

If a component Statm~ent is detected, then Process
1404 returns the transition associated with that compo-
nent state. The local reliability model which is defined
as input by the user. Both 1496 and 1404 return to pro-

FIG. 15 shows a process 1404 which is used to define
transitions or return a transition that reflects the state
condition to normal which would normally be a failure
state. When invoked, item 1502 moves the condition
being analyzed from the future condition list to the past

In this situation, substitutions were made and at the 45 condition list, so that if this condition is ever analyzed in
completion of a cycle, the output condition changed another clause i t will not be necessary to go through the
from a N O T condition to a condition being true. For procedure Typically, conditions are moved from
example, the output condition may have changed from the past to the present list, the future to present list and
Some being bad to Some output variable being then after being analyzed from the present to past list. In
nil or nonexistent. This result occurs when some action 50 this case, because the type of "component state" is a
was taken on the part of the components to compensate relatively short process, the present process moves di-
for other failed components. These are generically rectly from the future list. The condition lists may be
termed "nonfault transitions". Recall that the local considered as global lists wherein any particular module
model which is used as input to define all fault transi- or component has
tions does not define nonfault transitions. Item 1504 then retrieves the transition for this state

An important aspect of the Present invention is that it from the local reliability model which reflects the state
detects nonfault transitions by denoting a change to change. This State is represented as a variable in the
some variable or condition because it is known that the output definition and that variable is
change didn't occur because Of a fault. BY default they added to the base list by item 1506. The transition pro-
are nonfault transitions and they denote a failure recov- 60 cessed by item 15w takes the following form:
ery. When a nonfault transition is detected, item 1324

25 analyzes each condition.
A clause may have many other

also a case wherein no changes occurred and, regardless generally described. When invoked, subroutine 1314
of the additional
duced, I,, [his case, the entire is dropped, is
necessary
because (his the condition is true -IF* the
condition is true and the other conditions are true,
There is no need to determine how all these other con.
ditions happened because it is elementarily known that
the clause is true. Therefore, item 1322 ignores the other 35
conditions in the clause and program control passes to
item 1318 so that the N O T (condition) can be added to
the list of changes to transitions that are applied to other
elements. cess 1406.

3 is detected. the output condition is defined as follows:

the other conditions in the

Referring now to conditional block 1306, when case 40

OCTPLT <condition >IF NOT <condition>

to (hem.
5 5

adds a nonfault transition to the list of transitions.
Therefore, the description of this component is en-
hanced. In the course of processing components, com-
ponent descriptions are continuously modified by modi- 65
fying the output characteristic definition by exchanging
bases for logicals and by adding conditions to transi-
tions. In this case, nonfault transitions are added to the

IF T < n o [fdilrd>(\\herein A I\ rhc component
name) then tranairion to \ < r i m !rate>

There may be several states. A "not failed" state is
indicative of an unfailed component. In addition, the
user may define a name for a failure state to indicate
each failure mode associated with the component. One

5014,220
29

common state is “BAD”, which states that a component
failed in such a way that all its outputs are corrupted or
bad. Another common state is a “NO-OP” which states
that a component failed in such a way that it doesn’t
work and outputs nothing. Hereinafter component
states are specified in all capital letters.

Often a component will have more than one failure
mode. For example, for a particular component, it con-
tinues outputting, but it is outputting corrupted data and
in another state, it ceases outputting altogether.
Whether a component outputs corrupted data when
failed depends on the device. For example, in some
cases, a communications node may not respond only t o
inputs and in other cases, a communication node may
respond only to inputs but doesn’t provide correct in-
formation at the output. The effects of these two differ-
ent failures are quite different in the system or can be
different in the system.

Item 1506 is invoked to add the component state
variable to the base list. This state condition must be
included in the base of conditions. Also, all input condi-
tions for this component may be added to the list of
bases. Further, the output characteristic condition may
be placed on the logical list by item 1508 since it may be
represented equivalently by the component state and
input conditions on the base list. In other words, the
output characteristic condition may be replaced by a
logical equivalent of other base conditions.

The preferred form of describing a condition is as a
logical relationship of other conditions to reduce the
number of variables that are produced in the final out-
pat characteristic definition and transitions. Therefore,
wherever possible it is desirable to replace variables by
their logical equivalents. In some cases, such as failure
states, this is not possible and these are represented
explicitly.

The input characteristic process 1406 is described
generally in conjunction with FIG. 16. Item 1602
moves the condition from the future condition list to the
present condition list being analyzed. There may be
other conditions that are analyzed which affect the
present condition so this condition may not finish analy-
sis until other conditions do.

Process control then passes to conditional block 1604,
which checks the condition to see if the condition is an
input predicate or if it’s a simple input characteristic.

Before defining the algorithm detailed in FIGS. 16,
17 and 18, an overview is presented in the paragraphs
immediately below.

For some components, defining an OCD in terms of
simple Boolean relationships among input characteris-
tics is not sufficient. This is especially true when inputs
are redundant and the effects of single and multiple
redundant component failure modes on other compo-
nents are analyzed. It is therefore necessary to allow
input characteristics to be defined by predicates. For
example, define a VOTER as a component that outputs
the majority value of the inputs it receives from redun-
dant components. In specifying the OCD for the voter’s
corrupted output as a function of its corrupted inputs,
one might define the “number” of inputs that are cor-
rupted (Le., #x(i):b for all x(i) inputs to the voter). By
allowing this specification, the output definitions for
components may contain conditions of input predicates.
In the case of a voter, the OCD may be:

0UTPUT‘y.h if #n(i):b>#x(i):g

30
This states that the voter’s output, y. is corrupted if

the number of corrupted inputs exceeds the number of
noncorrupted inputs. In the absence of the # predicate,
an equivalent specification must be defined as:

5
OUTPUT y:b IF xl:b and n2:b

OR xl:b and n3:b

OR x2:b and n3:b

OR xl:b and x2:b and n3:b

10

for a voter component with three inputs. Thus, being
able to specify input predicates is beneficial. Further,

I5 the final aggregated model benefits from specifying the
state space elements in terms of predicates. ASSIST
contains a rich set of primitives for specifying state
space elements and transitions that change those ele-
ments. For example, the “#” predicate may be repre-

2o sented as a single state space integer whose range is
from zero to three. The ASSIST syntax for this is:

X f O . . . 31 /* rtate $pace */
DEATH IF X < 1. /* 5pecilication of

25 unreliable mtes */

where x represents the number of inputs that are cor-
rupted. The Death statement represents the state of the
system in which the output of the voter is corrupted.

3O Contrast this with the ASSIST model:

STAT’E=Xl[O..l], X2[0..1], X3[0..1]

DEATH IF (X I =] A N D X 2 = l)

O R (X l = I A N D X 3 = 1)

OR (X2=l AND X 3 = I)

OR (XI = 1 A N D X2= I A N D X3= 1)

35

40

where X1, X2. and X3 represent whether or not input 1,
2 or 3, respectively, is corrupted.

In order to specify input predicates, RMAS requires
guidance in finding transitions that contribute to predi-

45 cates. Therefore, internal to RMAS are a set of tem-
plates, each template indicating how a predicate should
be analyzed and represented in the aggregate model.
For example, the model of the # predicate might consist
of:

50

MODEL: #(< cond >)
COI: <cond>
Change rep: no change necessar):
Contributory mansition\.
replace IF I <cond >)
ui lh IF #I<cond>) > 0
replace TRANTO <cond>
with TRANTO #(<cond>)=#(<cond>) + I
Detractory transitions,
replace <cond> with #(<cond>)=#(<cond>l - I
ASSIST CONVERSION: #(<cond >):integer

55

60

The template first specifies the condition of interest
(COI). The COI is a simple input characteristic that is to
be traced to find transitions that contribute to the predi-

65 cate. The COI for #(X(i):b) is X(i):b-find transitions
that contribute to a particular input to the voter being
corrupted. The contributory transitions field indicates
the changes that are to be made to the transitions found

5.0 14.220
31

for the COI to reflect changes to the predicate. Here,
the transition:

IF N i l B T R A N T O

is changed to:

IF #(S(I) B)>O T R A N T O

Similarly, the transition:

IF tranto X(I) b

is changed to:

IF T R A N T O #(x(I) b)=#(x(l) b)- > I .

A similar change is defined for detractory transitions.
The definition and use of detractory transitions is de-
scribed in conjunction with FIGS. 22B1 and 22B2

The template also defines the ASSIST representation
of the function to be used to encode the aggregate sys-
tem model into ASSIST primitives. For the "#" predi-
cate, the template defines a state space element whose
name is indicative of the condition and the function and
whose type is integer. Further specification may be
added to define the bounds on the integer.

Finally, the change rep(representati0n) field indi-
cates that a predicate cannot explicitly be represented in
ASSIST syntax and, therefore, a representation in AS-
SIST using a different predicate must be substituted.
ASSIST allows integer state vector variables and,
therefore, the predicate # can directly be represented in
ASSIST using an integer variable as shown above.
However, in representing the predicate, ALL, for ex-
ample, an analyst would encode in ASSIST using an
integer variable also by comparing the number to the
total number of elements possible (i.e., ALL(X-
(i):b)=#(X(i):b)=N where N is the number of X(i)).
The template for A L L therefore includes a "change
rep" field that refers to the "#" predicate:

510DEL ALL(<ccind>)
C O I . <cond>
Chanse rep: #(<cond>)=?get max(obj)
from BED \\here ob j IS component (or
componeni of data) in <cond>
Contributory Iransilions:

replace IF (< cond >)
Mith IF #(<cond>) = Max(obj)
replace T R A N T O <cond>
Mith T R A N T O # (<cond > I = #(<cond >)+ 1

replace <cond>
uirh #(<cond>)=#(<cond>) - 1

Detractor\. transitions:

ASSIST CONVERSION. # (<cond >) :
10 md\lobi)l

Recall that transitions and the OCD returned from
analysis of an input condition are aggregated with the
current OCD from the inputting component. T w o op-
tions were described for this aggregation, with the pre-
ferred option (option 1) replacing the input characteris-
tic in the aggregated model with an equivalent defini-
tion from the OCD of the outputting component. How-
ever, if the input characteristic is a COI for a predicate,
i t must not be eliminated from the model. Instead, the
reference to the input characteristic is replaced by the
changes as specified by the contributory and detractory
transitions fields, and must not be eliminated. Therefore,
option 2 must be used to combine models in order to

32
preserve the COI variable until it is replaced by the
appropriate representation.

Referring now to FIG. 16, if an input predicate is not
detected, then conditional block 1604 invokes process

5 1606, designated "simple input characteristics", which
analyzes the condition to find the transitions which
contribute to that condition. If an input predicate is
detected, control passes to conditional block 1608
which determines if there is a representation change in

Item 1610 is selected to analyze the predicate to look
up a model defined for that predicate to determine how
that predicate will be represented in the final reliability
model.

Process 1612 is selected in situations where the input
predicate is already in the correct syntax and it is not
necessary to refer to the knowledge base to convert the
input predicate to the proper syntax. Process control
then passes to item 1614, which moves the condition
from the present list to the past conditions list as the
conditions have been analyzed. Process control then
passes to conditional block 1616, which checks to deter-
mine whether the condition just analyzed is an input
predicate. If it's a predicate, then process control block

25 1618 is invoked to examine the lists of transitions al-
ready defined and define transitions that may need to be
changed to reflect changes to currently defined transi-
tions that reflect a detraction of previously defined

3o predicates. Also, previously defined transitions are
changed to reflect detractions of currently defined
predicates. These changes are discussed further with
respect to FIG. 220.

The process of FIG. 16 invokes process 1610, desig-
35 nated representation change, which is shown in detail in

conjunction with FIG. 17. The representation change
process 1610 begins with item 1702. For an input predi-
cate, item 1702 looks up an internal model for that pred-
icate, determines the new equivalent representation for

40 that predicate and adds this new representation to the
list of conditions to be analyzed on the future conditions
list. Analyze condition process 1704 is then invoked to
analyze the new representation. Process 1704 is equiva-
lent to process 1314. Once complete, program control

45 passes to Item 1706 which moves both the old and the
new representation conditions to the past conditions list
because if some other clause references that old repre-
sentation, the process refers to the past condition list to
indicate that processing this condition has already been

50 done. It is not necessary to modify anything previously
analyzed. Process control then returns to item 1614.

The process 1612, designated input predicate, is
shown in detail in conjunction with FIG. 18. Process
1612 begins with Item 1802. Item 1802 looks up in the

5 5 internal representation for an input predicate, the condi-
tion of interest (COI) for that predicate. The condition
of interest, as discussed in the overview of FIGS. 16, 17
and 18, is a simple input predicate equivalent that is
analyzed to find transitions that contribute to that sim-

~3 ple input predicate and that simple input predicate is
passed to Item 1804 which adds that simple predicate
condition or Boolean combination of input predicate
conditions to a list of conditions to analyze.

For example, the input predicate may be the number
65 of x:(i) equal to the number of x:(i) that are good. The

model then states that in order to find the transitions
that contribute to the number of the condition, the con-
ditions are retrieved which contribute to the condition

10 the final model.

l 5

5,014,220
33 34

and any transitions that were returned are changed to to be made to the transition. If no changes are made, the
make up changes to the whole predicate. Therefore, the process iterates for the next transition according to
input predicate has a model which was referred to pre- conditional block 1910.
viously, including the condition of interest. That condi- If a fault transition is detected in conditional block
tion of interest is added to the list of conditions analyzed 5 1912, then the characteristic for the model returned by
in 1804, and then process control block 1806 is invoked process control block 1906 is combined with the exist-
t o analyze that condition. Process 1806 is equivalent t o ing OCD for the partial outputs in one of two ways
process 1314. Once analysis of that condition has re- (recall that the initial OCD is always the parent’s output
turned the internal model for the input predicate, pro- characteristic definition as defined in 1006). The par-
cess control passes to item 1808 to add transitions to the 10 ent’s output characteristic definition is initialized to the
contributory transition list (CTL). Once those condi- output characteristic definition or OCD of the subcom-
tions are returned, the transitions are changed accord- ponent that finally outputted the characteristic. Thus,
ing to the predicate model and item 1810 is invoked to the OCD returned from analyzing an input characteris-
change those transitions returned to reflect changes to tic is combined with this OCD). The first option is
the predicate if necessary. 15 executed in process control block 1916 and the second

FIG. 16 refers to process 1606 designated “simple option is executed through process control block 1918.
input characteristic” and this process is described in Option 1 replaces the input characteristic definition
more detail in conjunction with FIG. 19. FIG. 19 begins from the existing parent model with the OCD returned
with item 1902, which examines the input characteristic from 1906.
and locates the component that outputted the character- 20 This is the preferred model because the number of
istic. In order to analyze the conditions which contrib- state space variables is reduced. In other conditions,
ute to the input characteristic, the component must be such as when the input characteristic is a condition of
iocated which outputted the characteristic to determine interest as checked in conditional block 1914, this con-
what changes occurred in that component or other dition must be retained for further processing. “Condi-
components that contributed to an output being bad 25 tion of interest” means that the variable is a variable
(which became the input characteristic. Once the com- currently being used for analyzing an input predicate
ponent is located, process control passes to conditional wherein a transition may be altered through the input
block 1904. Conditional block 1904 examines a compo- predicate process discussed in FIG. 18, because this
nent to determine whether the component that output- condition of interest cannot be discarded. If transitions
ted the characteristic is a parent component. 30 are found for this variable, the reference to the variable

Recall that the function of an RMAS module is to is replaced in the transition by the predicate to which i t
define for a parent component a reliability model which refers according to the predicate model. Under this
is the combination of its subcomponent’s models. The condition, the input variable cannot be discarded. In
process begins at the output of the parent and continues this state, process control block 1916 is invoked.
by tracing through the subcomponents until returning 35 Another situation where process 1918 is not required
to the input of the parent. At this stage the process is when the input characteristic is on the base list as
returns to the input of the parent and so the final model checked by conditional block 1920. Here, i t is not desir-
for the parent is an output characteristic definition able to eliminate the input characteristic, In this option,
based upon subcomponent states and input to the par- process control block 1916 is invoked to combine the
ent. This comprises the end of processing for this mod- 40 two output characteristic definitions, by changing the
ule. transitions returned rather than the OCD. Processes

If processing for a particular module is complete, 1916 and 1918 will be further discussed below,. When
process control returns to item 1614 to move conditions process control block 1918 is invoked and through its
from the present to the past conditions list. If not at the processing the models were not successfully combined,
parent component level, further analysis must be done 45 then decision block invokes process block 1916 to com-
and control passes to process 1906 which recursively bine the models. Regardless of which option is chosen,
calls the same subroutine as process 918. In the present the output characteristic definition for the current input
process, the outputting component is analyzed and characteristic is combined into a single output charac-
within that component, subcomponents are analyzed, teristic definition before returning to block 1614.
and when the inputs to the subcomponents are reached, 50 In FIG. 19, process “option one combination”, block
if the Component is not a parent component input then 1918 is invoked and this process is discussed in more
the present procedure is invoked recursively to analyze detail in conjunction with FIG. 20. When invoked in
the next component. In other words, there is an ana- process 1918, item 2020 defines the condition as a logi-
lyzed component and within this component there may cal equal to the output characteristic definition for the
be a subprocedure analyzing a condition. For each such 55 condition for the component analyzed in process 1906.
condition of the OCD, analyze component subroutine Process control then passes to item 2022, which re-
1904 is called to analyze the component for this output places the reference to that condition in the parent’s
condition. This process repeats until the input of the output characteristic definition for the output charac-
parent component is reached. Once process 1906 is teristic for that condition.
complete, control passes to conditional block 1910. 60 The “option two combination” process 1916 is de-
Once analyze component process 1906 is complete, scribed in more detail in conjunction with FIG. 21.
program control enters loop 1908. Process 1916 begins with iterative block 2101, which

When loop 1908 is entered iterative block 1910 exam- iterates for all transitions returned from O C D in 1906.
ines each transition that is returned, or iterates for each When all transitions have been analyzed. control passes
transition returned. I f necessary, if certain attributes of 65 to 1614. Otherwise, control passcs to conditional block
the transition exist, the transition is changed as follows. 2102. which examines the subcomponent’s output char-
If the transition returned is a nonfault transition, indi- acteristic definition format returned from 1906 as it
cated by conditional block 1912, then no changes need exists. If it is of the form:

OUTPCT P IF A AND b

5.0 14,220

then conditional block 2104 is selected.
Otherwise, if its output condition is of the form:

output condition, P: ” I F “ A OR 5

rhen conditional block 2112 is selected.

statements.

the transition format is:

P is a generic output condition in both of the above

When invoked, conditional block 2104 determines if

IF q TRANTO A and r

where A is referenced in the subcomponent OCD and
“r” may be any other conditions. Then the transition
changes according to item 2106.

Therefore, not only is transitioning to A defined but
also transitioning to output characteristic P which is
also:

IF q TRANTO A and r
IF B TRANTO P
endif.

Process control then returns to conditional block
2101.

The rationale for this is that before the transition, the
transition A was true, but the process transitioned to
NOT A, and if before this transition A and B were true,
then P would have also been true. But after this transi-
tion P IS also not true. Process control then returns to
block 1614.

Condition block 2108 checks for the transition for-
mat:

IF q franiition to VOT(A) and r

if detected, the following substitution is made in item
2110:

IF 9 tramition to SOT(.#) and I

IF B TRASTO NOT10
endif.

The rationale for this is that before the transition, the
transition A was true, but the process transitioned to
NOT A, and if before this transition A and B were true,
then P would have also been true. But after this transi-
tion P is also not true. Process control then returns to
conditional block 2101.

If the subcomponent’s OCD is of the form:

OUTPUT P IF A or 8.

then selected conditional block 2112 examines all transi-
tions of the format:

IF a franrition to A A N D r

Which is identical to the test provided by conditional
block 2104, wherein one is analyzed within:

OCTPUT P IF A OR B

and one is analyzed within:

OCTPL‘T P IF A 4ND B

5

10

15

20

25

30

35

40

45

50

55

60

65

Under this situation when transitioning to A, the pro-
gram adds to the nested transition:

IF 9 TRANTO tu 4 4ND r.

IF NOT E TRASTO to P
ENDIF:

The rationale for this is that when the OR condition
(A OR B) wasn’t true and it becomes true, then P also
becomes true.

If conditional block 2112 determines that condition
was satisfied, then item 2114 is selected to change the
transition and return for all transitions of that format. If
the testing in conditional block 2112 is not passed, then
conditional block 2116 is selected which iterates for all
transitions of the form:

IF q TRANTO NOT(A) and r

For this type of transition, a nested transition is substi-
tuted by item 2118 which states:

IF 9 TRANTO VOT(-1) dnd r

IF NOT(R) TRANTO UOT (P)
ENDIF.

In FIG. 16, process 1618, labeled detractory transi-
tion effects, was invoked by conditional block 1616.
The detractory transition effects process 1618 is de-
scribed in more detail in conjunction with FIGS. 22B1
and 22B2. This process is invoked after an input charac-
teristic has been analyzed to determine whether i t is a
simple characteristic or a predicate. For those transi-
tions that were found which contributed to that predi-
cate, all previous transitions must be analyzed to deter-
mine whether they detract from that predicate condi-
tion.

The rationale behind this process is as follows. A
given transition may also detract from the presence of
other conditions, and this effect must be reflected in the
transition also. For simple conditions such as simple
input characteristics that are modeled as bases and for
component states, no changes are necessary.

For example:

IF P-NOF TRANTO P-BAD

is a contributory transition for PBAD, but i t is also a
detractory transition for PNOF. Since it is implicitely
assumed that a component can not be in more than one
state simultaneously, there is no need to change the
transition to:

IF P-NOF TRANTO P-BAD. NOT (P-NOF)
BY P-BADRT

The same holds true for simple input conditions that
are modeled as bases:

IF x (g) TRAWTO x (h)

When a variable x has a characteristic “b“. i t i s not “g”.
But for predicates (#(<cond>), for example), the de-
traction is not identified:

For example:

5.014.220
37

IF PNOF TRANTO PBAD. #(x.(b))=#(n.(b))+ 1
BY

When #(x:(b)) increases by 1, #(x:(g)) decreases by 1.
To reflect this change:

IF PNOF TRANTO PBAD. # (x (b))=#(r lb))+ I
#(x.(g))= #(x (g))- 1 BY

To accomplish this, a procedure, FIND DETRAC-
TORY TRANSITION, is called for each condition.
The procedure determines if any previously defined
transitions detract from the current condition (if the
current condition is a predicate) and if any currently
defined transitions detract from previously defined
predicate conditions.

Returning to FIG. 22A, when invoked, conditional
block 2204 iterates for all new predicate bases. Condi-
tional block 2202 examines previous transitions that
were defined to determine whether any of those transi-
tions detracted from that predicate. Decision block
2206 then reviews the condition of interest (COI) for
the predicate to determine if it is the base and if so the
logical for that condition is examined by item 2208.
Otherwise, the COI is examined by item 2210. In other
words, decision block 1206 determines whether the
condition of interest is a base. If not, then item 2208
recalls the base equivalent for the logical. If it is a base,
then a search is conducted on that COI according to
item 2210.

Once determining what base is being searched for in
the previously defined transitions (called by the search
key), conditional block 1214 examines the condition
part of the transition and searches for the key for the
conditional portion of the transition determines if the
key is violated in the consequent part of the transition.
If so, a detractory transition has been located for that
key. Therefore, item 2216 adds to the transition accord-
ing to the detractory rule of the predicate. The detrac-
tory rule of the predicate depends on the predefined
model currently being used for the predicate. The mod-
els for predicates was discussed previously. Process
control then returns to 2204.

The nested loop 2201 iterates for all new predicate
bases and and within it is a nested loop 2203 which
iterates for all previously defined transitions accord-
ingly to conditional block 2204. After loop 2201 ends,
control passes to loop 2218, which iterates for all new
transitions according to conditional block 2220. For all
new transitions a nested loop 2222 iterates for all previ-
ously defined predicate bases accordingly t o condi-
tional loop 2224. Therefore, for all previously defined
bases for each new transition, the following process is
performed. Conditional block 2226 determines whether
the condition of interest a base (which is similar to the
function of conditional block 2206) and if it is not a base,
then the logical equivalent is substituted in by item
2228. If it is a base, then the search key, according to
item 2230 is the COI itself.

The search itself is checked according to conditional
block 2232 which checks to determine if the key is in
the condition portion of the transition and is violated in
the consequent part of the transition. If so, then the
transition is modified according to item 2234, which
states that the transition is added to according to the
detractory rules of the predicate base. That is, the predi-
cate base is iterated according to block 2224 and if the
test in conditional block 2232 is negative then control

38
passes to conditional block 2224 to get the next predi-
cate base.

In summary, up to this point, what is defined is what
is necessary to aggregate a set of subcomponents models

5 into a single model per parent. This is sufficient to ana-
lyze an entire system that is two levels deep. One level
for the parent and the second level for subcomponents.
However, the BBD and SYSD are a hierarchy of many
levels. In FIG. 11, analyze component process control

10 block 918, because of the hierarchy, when particular
component is analyzed, a slightly different operation is
performed if the component is not a lowest level com-
ponent, o r if the subcomponents are not identified at its
lowest level. Process control block 1106 processes com-

Process control block 1106 of FIG. 11 is shown in
greater detail in FIG. 23. FIG. 23 which begins with
conditional block 2302. Conditional block 2302 deter-
mines if an intermediate level model has been analyzed

20 previously. If so, the reliability model for the intermedi-
ate level exists it is passed to loop 2306 which begins
with conditional block 2308. If an intermediate level
model does not yet exist for this intermediate level com-
ponent, control passes to process 2304 to invoke the

25 highest level RMAS model for that subcomponent
which is described in conjunction with FIG. 9. This is
the highest level iterative structure of the RMAS tool.

Once that model is determined, i t is passed to iterative
loop 2306, which iterates for each clause in the output

30 characteristic definition according to iterative block
2308. For each clause, control passes to conditional
loop 2310, which iterates for each condition in the
clause according to iterative block 2312. For each con-
dition, the condition type is checked by conditional

35 block 2314 to determine whether it is a current condi-
tion. If so, then that entire clause need not be analyzed
and the next clause is analyzed, according to condi-
tional block 2308. I f i t is not a current condition, ac-
cording to conditional block 2314, then control passes

40 to conditional block 2316. which determines if the con-
dition is a logical or a base. If it is a logical, control
passes to item 2318, which substitutes the base equiva-
lent for the logical and control passes to process control
block 2320 which reorders the single clause into one or

45 more clauses according to D N F form. These clauses are
then added to list of clauses by item 2322 and control
passes back to the conditional block 2308 to iterate
those new clauses and the rest of the clauses. If it wasn't
a logical condition according to control block 2316,

50 control passes to conditional block 2312 which reiter-
ates for the next condition.

After all conditions have been analyzed according to
iterative block 2312, control passes to process block
2324, which invokes the check intermediate clause type

55 subroutine. This is within the loop 2306 for each clause
that passes the test. In other words, block 2324 is exe-
cuted for all clauses that don't include a current condi-
t ion.

Referring now to FIGS. 24A and 24B, the check
60 intermediate level clause type process is shown in detail.

In case 5, in which there is no cycle in the interaction,
this type of clause is a type wherein the output charac-
teristic definition is defined in terms of input character-
istics and component states. I n that case, process block

Referring now to case 1 conditional block 2402 de-

15 ponents defined on the intermediate level.

65 2412 is invoked.

tects a clause which states:

5.0 14,220
39

<oulput condition> IF <condition>

where <condition > is an output characteristic.
In other words, conditions were substituted such that

the process is analyzing the condition which contrib-
uted to an output characteristic being true and in the
process of analyzing this, the process has come through
a complete cycle and through the substitution of bases
in for logicals, the condition that is being analyzed on
the left side of the OCD is also represented on the right
side of the OCD. The present invention determines
what conditions contributed to output x being bad, and
the clause states that the output is bad when the output
is bad. This indicates a cycle in which no changes oc-
curred. For example:

x:b IF x b

This indicates there are no transitions through this
clause which can be analyzed to determine if x is bad,
and the clause may be deleted from the final local model
which is created. In order to drop this clause and make
the other clauses complete and correct for the output
characteristics, i t is necessary to NOT(condition) to any
other transitions from other clauses which indicates that
this condition, x:b isn’t true in the other clauses. This is
done in item 2416.

In case 1. the present invention can ignore the clause,
and so for other clauses being analyzed through the
iterative loop 2404, any transitions returned through
this analysis must include NOT(condition) for the cur-
rent output characteristic condition in the transitions.
Item 2418 adds N O T condition to a list of condition
changes, then the list of transitions currently identified
for previously analyzed clauses is updated by item 2420.
If there are no changes, item 2420 takes no action. Item
2420, then, checks all transitions that were returned
prior to this clause and makes the changes to those
transitions that were already returned. This is similar to
the function of item 2416 with the difference being that
it does it to all prior transitions whereas item 2416 pro-
cesses new transitions. When complete, all transitions
for all clauses will be updated with new changes.

Case 2 is detected by conditional block 2404. Case 2
is similar to case 1 and is defined by the clause:

output <condition > IF <condition>

A N D <other conditions>

where <condition> is an output characteristic and
<other conditions> contain conditions that does not
include the output Characteristic.

A clause may have many other conditions. This is
also a case wherein no changes occurred and, regardless
of the additional conditions, the same result is still pro-
duced. In this case, the entire clause is dropped. It is not
necessary to analyze the other conditions in the clause
because this clause states the condition is true “IF” the
condition is true and the other conditions are true.
There is no need to determine how all these other con-
ditions happened because it is elementarily known that
the clause is true. Therefore, item 2422 ignores the other
conditions in the clause and program control passes to
item 2418 so that the NOT (condition) can be added to
the list of changes to transitions that are applied to other
elements.

40
Referring now to conditional block 2406, when case

3 is detected, the output condition is defined as follows:

OCTPUT <condilion> IF NOT <condition>

5
In this situation, substitutions were made and at the

completion of a cycle, the output condition changed
from a NOT condition to a condition being true. For
example, the output condition may have changed from

10 some variable being bad to some output variable being
nil or nonexistent. This result occurs when some action
was taken on the part of the components to compensate
for other failed components. These are generically
termed “nonfault transitions”. Recall that the local

15 model which is used as input to define all fault transi-
tions does not define nonfault transitions.

An important aspect of the present invention is that it
detects nonfault transitions by denoting a change to
some variable or condition because it is known that that

20 change didn’t occur because of a fault. So, by default
they are nonfault transitions and they denote a failure
recovery. When a nonfault transition is detected, item
2424 adds a nonfault transition to the list of transitions.
Therefore, the description of this component is en-

25 hanced. In the course of processing components. com-
ponent descriptions are continuously modified by modi-
fying the output characteristic definition by exchanging
bases for logicals and by adding conditions to transi-
tions. In this case, nonfault transitions are added to the

30 transition list. In generating a combined model for a
parent component, both an output characteristic defini-
tion and a set of transitions are generated. In the present
process, output characteristic definitions are continu-
ously modified to encompass all the subcomponents

35 wherein the transitions are also continuously modified.
Case 4 is detected by conditional block 2408 and is

defined by the following clause:

OUTPUT <condition>lF NOT (<condition> 1

A N D <other conditions>
40

The relationship between case 2 and 3 is analogous to
the relationship between case 1 and case 2 except that in

45 case 4 the other conditions must be analyzed. In other
words, a transition contributed to the other conditions
which must be true for the clause to transition to the
new condition. In this case, after statement 2426 process
control passes to conditional block 2412 to analyze each

50 condition by calling process block 2414 to analyze each
condition iteratively. Because each condition must be
analyzed and because a change was detected, the pro-
cess control passes from Item 2426 to process block
2412.

Referring now to FIG. 25, when selected, conditional
loop 2502, iterates, for each condition of the output
characteristic definition of the clause being analyzed by
the intermediate level of output characteristic defini-
tion, according to conditional block 2504. For each

60 condition, the condition is interrogated by conditional
block 2506 to determine if its a parent input condition. If
its not a parent input condition, then subprocess 2508 is
invoked to analyze subcomponent condition. If i t is a
parent input condition, then i t is added to the list of

65 parent input conditions to be analyzed according to
item 2510. Control then passes to conditional block 2511
which determines if the condition is on the past or pres-
ent condition list. Ifso, control returns to iterative block

55

5,O 14,220
41 42

2504. Otherwise, control then passes to process 2512, level components and these models may be used as
analyze condition, which is equivalent to conditional direct inputs to RMAS.
block 1314 in FIG. 14. Once analysis of that condition is The problem instance for the Local Model Generator
returned by that process, the transitions returned are (LMG) may be defined as follows. Given a hierarchical
changed according to the list of changes on the transi- 5 description of the candidate architecture (represented in
tion list in item 2514, which i s equivalent to item 2420 in the BBD and SYSD) in which component functions are
FIG. 24. Control then returns for the next condition in defined at the lowest level of description and a high
iterative block 2504. level system unreliable condition for which the reliabil-

FIG. 26 shows more detail of process 2508 which ity is to be established, define for each of the lowest
includes iterative block 2608 which iterates, for each 10 level components, a local reliability model. Each local
transition defined for the subcomponent condition reliability model defines for the component all output
being analyzed. Recall that there is a list of transitions characteristics as a function of the states of the compo-
for that subcomponent condition on the contributory nent (i.e., failure modes) and the characteristics of the
transition list generated by invocation of process “ana- input to that component (e.g., corrupted or noncor-
lyze condition” of FIG. 14. For each of those transi- 15 rupted inputs).
tions, according to iterative block 2604, a subloop 2606 The Local Model Generator consists of 3 processes
is invoked for each condition in that transition. Control mentioned in conjunction with FIG. 7. One process (11)
block 2608 iterates each condition and passes control to is invoked for each intermediate level component and
conditional block 2610 which checks to see, if the con- two processes (L1 and L2) are invoked for each lowest
dition is a parent condition or not. If it is not a parent 20 level component. Like the RMAS processes, the L M G
condition, then process 2612 recursively invokes this processes are instantiated in a hierarchy corresponding
process to analyze a new subcomponent condition. to the components defined in the SYSD (and supporting
Thus, process 2612 is analogous to process 2508 of FIG. BBD). Initially, the highest level component module
25. (11) is instantiated. This process is involved primarily

If the input condition is a parent input, then it checks 25 with controlling the order of invocation of the other
to determine whether the condition is already on the list L M G modules. Given the unreliable condition specified
ofparent conditions to be analyzed by conditional block in terms of the function defined at this level, process I1
2614. If it is already on the list of conditions to be ana- identifies the immediate subcomponents involved in the
lyzed, then conditional block 2616 checks to determine function. Separate reasoning modules for each subcom-
whether the condition is logical and if so item 2618 30 ponent are then instantiated by process 11 in an order
substitutes the bask equivalent in for the logical. In according to the functional flow.
either case, control returns to conditional block 2608 for For each successive intermediate level component
the next condition. If in conditional block 2614, the abstraction, processes I 1 is performed as in the highest
condition is not already on the list of conditions already level module to identify subcomponents involved in the
analyzed, then process control block 2620 is executed to 35 function. Separate modules for each subcomponent are
analyze the condition. instantiated by process 11 according to the functions

Process 2620, which analyzes a condition, is analo- defined in the BBD/SYSD for that component level.
gous to process 1314 of FIG. 14. Once the transitions If the first subcomponent in the function is a parent
are returned from process 2620, control passes to item component also (ie., has subcomponents defined in the
2622, which adds the conditions on the list of changes to 40 BBD), another invocation of process I 1 is invoked for it
transitions returned and control passes to process 2624 to identify the next lower level subcomponents in-
to combine the OCD returned for the condition just volved in the function.
analyzed in 2620 with the existing OCD for the parent. If a subcomponent is defined at the lowest level in the
This combination was discussed above and is identical BBD where component failure modes are modeled.
to process 1918 in FIG. 20. Control then returns to 45 process L1 is involved for it. Recall that failure modes
control block 2608 to iterate for the next condition. are modeled as a change to the function, such that at the
When all conditions have been analyzed according to lowest level, there is a functional definition for the com-
control block 2608, control returns to the beginning of ponent under normal operating conditions and a func-
the loop 2602 for analysis of the next transition accord- tional definition for each possible failure mode.
ing to control block 2604. When all transitions on the 50 At the lowest level, where component failures are
contributory transition list for the subcomponent condi- modeled, process L1 inputs a set of possible input char-
tion have been analyzed, then control returns to control acteristics received from its parent component. For
block 2504 of FIG. 25. each operational state of the component (non-faulted

FIG. 27 is an overview of the process flow of the and faulted), L 1 traces the effects of all input character-
local model generator. The function of the local model 55 istics through the function to determine the resulting
generator is t o examine some high level unreliable con- output characteristics. Transitions for each possible
dition and trace the function that the condition relates failure mode are also defined. Process L2 then combines
to. The local model generator traces it through all the failure mode states and input characteristic conditions
components which are defined hierarchically in order that cause the same output effect, so that a single output
to define at the lowest level where failures occur, the 60 characteristic definition (OCD) for each output charac-
local reliability model for each lowest level subcompo- teristic is defined. These OCDs together with the transi-
nent. tions comprise the component’s local reliability model

Recall that RMAS also traced through components. which is returned to process I 1 of the parent compo-
However, RMAS traces components backwards from nent. Process I1 passes the output characteristics to the
the outputs to the inputs of the system. In contrast, the 65 subcomponent module which inputs these characteris-
local model generator traces components from inputs to tics. If that subcomponent is defined in the BBD at an
the outputs of the system. The output of the local model intermediate level, then 11 is invoked for it. Otherwise,
generator is the local reliability models for the lowest L1 is invoked and a local reliability model is defined.

5 .O 14.220
43

This depth-first trace proceeds through the hierarchy
until eventually, the outputs of the system are reached.
The resulting local reliability models for each of the
lowest level components can be interrogated by the
user or given to the RMAS processes discussed in the
previous section in order to define a global model for
the system. Several implementation details have been
omitted in the general overview just presented. The
next sections discuss each process in detail.

As stated above, process 11, for each intermediate
level component, manages the trace of the functional
flow between its subcomponents. First process I1 in-
vokes the module for the subcomponent who receives
the parent's inputs. The module invoked is either an
intermediate level module (11) or a lowest level module
(L l and L2) depending on the level at which the corre-
sponding subcomponent is defined in the BBD.

Both modules return a list of output characteristic
possibilities for each subcomponents' outputs. Process
I1 determines the next subcomponent to receive these
output characteristics and determines the order of invo-
cation of those subcomponents. The next subcomponent
module is then invoked and given the possible input
characteristics to analyze.

When the output characteristics of this parent's out-
puts have been returned by the last subcomponent,
process I1 passes these characteristics to the parent
module, 11, from which it was invoked.

If the subcomponents interact in a cyclic manner
within the parent module, process I1 must keep track of
the input characteristics given to a subcomponent mod-
ule so that when no new input characteristics are to be
analyzed, the trace ends.

At the lowest level, where component failures are
modeled, process L 1 inputs a set of possible input char-
acteristics received from its parent component. For
each operational state of the component (non-faulted
and each failure mode) L1 determines the effects of the
erroneous input Characteristics on the component out-
put characteristics. Thus, a given set of input character-
istics is compared against each possible failure mode for
the system, and the output effects for all combinations
are generated.

The next section introduces the algorithm for process
L 1 through an example function. Afterwards, a detailed
discussion of several aspects of the algorithm is given.

Consider a component that performs the following
function:

[I] inpui 11, x2, r;
IF r=O THEN z=x1+3;
I f r = l THENz=x2+4;
output y = I IF x l > x 2
y=x2 IF x l < = x 2 ;

Using the nil-sensitive operation default (discussed in
section 3.1.2.2), this function is encoded as:

121 input s i . X I . r;

L = .V.S(xi) ~ r = 0 I * 2 = xi + 3; *)

S S (x 2) r = I ; (* 2 = x? + j: 9)

ourput y = I 1 X I > x2

.il i X I < = X I :

Consider input characteristics: xl:(g,b,n), xt:(g,b) and
r=0,1 . Process L1 defines the possible output charac-
teristics (g.b,n) given this function and the possible
input characteristics. The output characteristic defini-

44
tion that is produced by L l for this function and the
input characteristics is:

OUTPUT CHARACTERlSTlC DEFl"iITI0C FOR 1';

[3] oulput g
5

IF r l (g) and x2 (g) and r = 1

OR .ri:(b) and .rl:(g) and r = I
OR .rl:(g) and x2.(g)

IF .rl:(b) and r = 0 OR
OR xl.(b) and .r1 (b)
OR +I:(gl and x 2 : l b)

output b
10

outvut n IF x l : (n)

If any failure modes are to be modeled for this com-
" ponent, then the additional function definitions for each

failure mode would have been defined in the BBD. and
these would be analyzed in the same manner by process
L1. For this illustration, assume that no failure modes

2o are modeled, and therefore, the OCD in [3] is the only
output of process L1.

The subroutine for process L 1 is shown in FIG. 29.
Process L1 has a nested looping structure that iterates
over all sentences within a function, and all clauses

In the first phase, the characteristics for each variable
are substituted into a given clause. Initially, only input
characteristics are known. These characteristics are
then propagated through the conditions and functions

30 defined in the clause. Each propagation results in a
generation of characteristics for other variables. These
new characteristics are substituted in for all other oc-
currences of the variable, and propagated until no new
substitutions may be made. The manner and order of

35 this propagation/substitution phase will be illustrated
for the example above. At the end of phase one, the
possible output characteristics of a given clause are
known.

In the second phase, each output of the clause is
instantiated for each possible output characteristic. This
substitution triggers a reiteration of propagation/substi-
tutions until each output characteristic is defined in
terms of input characteristics. The definition of each
output characteristic as a relationship to the input char-

45 acteristics is known as the output characteristic defini-
tion (OCD).

After all clauses for a sentence have been analyzed,
phase three combines OCDs for a common output char-

25 within a sentence. Three phases are distinguishable.

5o acteristic.
These OCDs are then modified so that:
1. The resulting OCDs for a sentence d o not overlap

between characteristics. Overlaps might lead to an erro-
neous model for the component. For example:

55 output g if x:(g)
output b if x:(g) OR y:(b)

is not acceptable because the output cannot be both g
and b when x:(g). Therefore, phase 3 ensures that no
overlaps occur between OCDs.

2. Overlaps within a particular output characteristic
should also be eliminated if possible. For example:
output g IF x:(g) OR

I F x:(g) A N D y:(b)
could be simplified to:

60

65 output g if x:(g)
3. Conditions such as x l >x2 or x l < = x 2 are not

included in the OCD, since the values of x l or x2 that
determine the truth or falsity of the condition are not

5,014,220
45

known. Rather, the condition is separated from the
variable characteristics in the OCD.

4. The output characteristic definitions must be de-
fined in terms of the input characteristics without refer-
ence to intermediate variables. For example, the OCDs
in [3] d o not include reference to variable z since z is an
intermediate variable dependent on the inputs x l and
x2. Therefore, after the conditions are separated from
the characteristics, the characteristics of intermediate
variables are removed from the OCD (but the variables
remain in the conditions).

5 . For each clause within the resulting OCD, any
variable whose characteristic set includes all possible
characteristics (g,b,n) can be eliminated from the clause
since the characteristic of that variable is not a determi-
nant of the characteristic output for the clause.

The next sections describe the three phases of process
L 1 for the example shown above. The correlation to the
exact phases and steps of the algorithm will not be main-
tained for this illustration. For instance, for the sake of
brevity, two clauses within a sentence are often ana-
lyzed concurrently, even though the algorithm ana-
lyzed each sequentially. Rather, the intent of this exam-
ple is to give the reader an understanding of the opera-
tions of substitutions, propagations, and the general goal
of process L1.

The sections following this example detail the under-
lying mechanics of the process.

PHASE 1: For each sentence of the function (delin-
eated by ;)

I . Substitute all input charxteristics in for input vari-
ables.

2. Propagate the input characteristics through the
conditions and operations of the function until the out-
put characteristics are defined.

FIRST SEKTENCE:

[4] 2 = .\.%XI) 1 r = 0 (* z = 1 1 + 3 *)

.\3(.r2) I r = I . (* z = 1 2 + 4 *)

I . Substitute xl:(g,b,n) and x2:(g,b) in for variables x l
and x2, respectively:

z = .VS~.rl:(y.b.n)) 1 r = 0 (* clause I *)

.’V.S(.v2:(g.b)) 1 r = I : (* clause 2 *)

2. Propagate the input characteristics of x l and x2
through all conditions and functions in the clause to the
right of the “ 1 ” symbol (each clause is delineated by 1).

PHASE 2:
I . Instantiate the characteristics of each clause’s out-

put into separate clauses. The output of these clauses are
the result of some operation, NS. Recall that nil sensi-
tive functions (NS) will output nothing (or nil) if any of
the inputs is nil. Therefore, the output characteristic
possibilities for NS functions is:
NS OUTPUT=good IF all operands are good

nil I F any operand is nil
bad IF any operand is bad

A N D no operand is nil
Since there is only one operand in each of the NS

operations above, applying the NS rules to [4] results in:
z:(g)lxl:(g) and r=O
z:(b) 1 xl:(b) and r =O
z:(n) I xl:(n) and r =O
for the first clause, and:

5

10

15

20

2s

30

35

40

45

50

5 5

60

65

46
z:(g) 1 x2:(g) and r = 1
z:(b) I x2:(b) and r = 1
for the second clause. [l]
PHASE 3:
1. Combine the two clauses according to common

characteristics for z:

Phase 3 also changes the OCDs to eliminate overlap-
ping conditions among clauses. However, there are no
such overlaps in these OCDs, and therefore. a discus-
sion of overlaps is deferred until analysis of the next
sentence.

SECOND SENTENCE:
PHASE 1:
Referring to the second sentence in [2]:

The second sentence is analyzed in the same way
using the characteristics for z:(g,b,n) defined in [SI and
the input characteristics xl:(g,b,n) and x2:(g,b).

1. For z:(g) and xl:(g,b,n) and x2:(g,b) and r = (0,l):

The conditions within {} indicates conditions that

The present invention finds the intersection of char-

x l : (xl:(g,b,n) and xl:(g)-+xl:(g)) in the first clause of

x2: (x2:(g,b) and x2:(g)-x2:(g)) in the second clause

The result after this substitution is:

must hold for z:(g) to be true (see [5]) .

acteristic possibilities for all variables in each clause:

[71

of t71

Next, note that x l is involved in a “>” comparison in
the second clause and has a characteristic possibility of
“n”.

It is meaningless to compare a variable that is “n”.
The condition is assumed to fail. Therefore, the “n“
characteristic is removed from t h e set for x l . To ensure
that the final OCD is complete for all input characteris-
tics, an additional clause is created that specifies that the
output is “n” if any input is “n”:

5,O 14,220
47 4s

Second clause of sentence in [6]:

PHASE 1:
I . For x2:(g) and xl:(g,b,n):

output y = x2 I x l < = x2;
[SI Output g ~ xI:ig) > . r? . (g .b) and r = 0 and r.(g)

1 rl:(,y.b) > .r?:(g) and r = I and x (g)

output n I .rl:(ri) 5 [14] outputglxl:(g,b,n)< =x2:(g);
AFTER PHASE 2:

PHASE 2 (Instantiate the clauses for each character-

Since the clauses already specify a single output char- 2. For W b) and xl:(g,b,n): [I61 output

PHASE 1: A F T E R PHASE 2:
2. For z:(b) and xl:(g,b,n) and x2:(g,b):

[I51 output glxl:(g,b)< =x2:(g) output n (xl:(n)
PHASE 1: is t ic) :

acteristic, no further instantiations need be done. 10 bl xl:(g,b,n)< =x2:(b);

PI output b 1 .rl.(g,b.n) > . r2:(g.b) {and

x l . (b) and r = 0) and z (b)
Summary for the second clause of the second sen- 1 .rl:(g,b,n) > XZ (g . b) {and tence: (combination of [I51 and [17])

x 2 . (b j and r = I } and z:(b)

20
Simplify [9] by taking the intersection of characteris- [IS] ou tpu t g . X I (g.b) < = r l (g)

tics for each variable: output 6

output ti .XI ri

~ l : (g , b) < = .r? (h):

i ~ t p u t b I SI (b) > x l @.bi and r = 0 and z f b)
2 5 P H A S E 3 :

Combine the characteristics for the output for the
.rl:(g.h.nj > .r? (b) and r = I and : f b)

two clauses of the second sentence ([13] and [IS]):

TION FOR Y:
[191 OUTPUT CHARACTERISTIC DEFINI- Here, again the "n" clause can be eliminated from the

characteristic possibilities for x l and an additional
clause can be created. 30

PHASE 2 (Instantiates the clauses for each character- . ~ l . (g , b) > x ? (h) and I = I and zig)
istic): , r l (g.6) <= .r2:(b)

Since the clause already specifies a single output output n 1 SI (f ?)

characteristic, no further substitutions need be done. 40
PHASE 1: As stated in the above general overview, Phase 3 is
3. For z:(n) and xl(g,b,n) and x2:(g,b): responsible for ensuring that the newly created OCD

for a component is complete and non-redundant: The
and z:(n) O C D is complete if it specifies an output characteristic
Simplify: 45 for every possible input characteristic, and it is non-
output nIxl:(n)>xt:(g,b) and r = O and z:(n) redundant if there is no input characteristic combination
Again, the "n" clause can be eliminated from the for which more than one output characteristic is de-

characteristic possibilities for x l and an additional fined. Also, characteristics for intermediate level vari-
clause can be created. However, this leaves the original ables for the sentence (Le., variables that are not inputs
clause with no possible characteristics for x l . There- 50 to the function or outputs for the sentence) are elimi-
fore, the clause is invalid and can be eliminated alto- nated from the OCD:

TION FOR Y :

[l 11 output n I xl:(g,b,n)> x2:(g,b) {and xl:(n) and r =O)

gether (The new clause remains). [20] OUTPUT CHARACTERISTIC DEFINI-

is t ic) : 55

[121 output n 1 xl:(n)
PHASE 2 (Instantiate the clauses for each character-

Since the clause already specifies a single output

Summary for the first clause of the second sentence

ourpul s I X I (g) > x2 (g.b) and r = 0 [A]

1 xI:(g.b) > 1 2 : (g) and r = I [B]

1 X I (g . 6) < = x 2 : (g) [C]
characteristic, no further substitutions need be done.

6o output b + I . (b) > .r2 (g b) and r = 0 [D]
! XI (g . 6) > rZ (b) and r = I [E]

I .rI (g .b) c = s 2 : i h) [F]
1 .r1 (t i l [GI

(combine [8], [lo], and [12])

[I 3 1 outpuf g i x l . (g) > x ? : (g . b) and r = 0 and zfg)

1 . r l . (g . b) > r? lg) and r = I and z:(g)

.r I (bl > .rZ fg.6) and r = 0 and z f b)

output n

outpur b
65 Phase 3 must analyze the O C D and detect any over-

laps in input characteristics. Overlaps occur because the
evaluation of a function is dependent on conditions
among input and internal variables. For example, the

i .XI (g.6) > .rZ.(b) and r = 1 and r ? b)

output n 1 X I (n)

530
49

output of a function may be dependent on a equality
comparison of two variables. The determination of the
truth or falsity of the conditions is dependent on the
value of the data. However, the value of the data is not
known. Rather, only the characteristics of the data is
known. This is not so much an incomplete specification
of a function as it is a symptom of the incomplete de-
scription of faults in general. For example, when a com-
ponent fails, and it is said that the failure causes cor-
rupted output, the value of the corrupted output is not
known. Another component acting on the corrupted

4,220
50

reasonable assumption would conclude that a variable,
x l , whose value is good, (i.e., xl:(g)) would not be
equivalent to a variable, x2, whose value is corrupted
(Le., x2:(b)). Therefore, a clause containing the condi-

5 tion, x:g=y:(g,b), can be reduced to x:g=y:b by assum-
ing that a corrupted input will not equal a noncorrupted
input. This is a reasonable assumption that may be used
to eliminate characteristic possibilities from clauses.
Although one may assume the following assumption:

10
x:b=y:b

input may test the input in a condition. The result of the
condition can not be known since the value is not
known. Therefore, multiple results (output characteris-
tics) may result from the same input conditions, distin- IS
guished only by the internal condition.

The result of this is a non-deterministic output char-
acteristic specification in which two or more output
characteristics may be defined on a particular combina-
tion of input characteristics, the distinguishing factor 20 condition propagation rules) during phase one.
being the internal condition.

x:g = y:g

The assumption may not always hold. Therefore, the
analyst is interrogated as to the validity of the assump-
tion if it is relevant to the particular clause. Because
these particular assumptions would apply to most cases,
the is interrogated on these assumptions (called

phase
three, when the process L1 detects an overlap between
two clauses in different OCDs, the user is asked if the
intersecting characteristics may be applied to one or the
other OCD.

3. Failing a resolution of the overlap by options 1 or
2, the user may elect to define a nondeterministic output
characteristic definition, by including for each path an
estimate of the probability of occurrence of the distin-

2. the input characteristics of one domain can be a 30 guishing characteristic or condition. However, the use
of this option is not encouraged because of the percent-
age assigned to each possibility is often subjective
(whereas the other options have some logical founda-
tion) and the resulting OCD has more conditions to

35 analyze. Returning to the example in [20], the following
overlaps between output characteristics are detected.

Overlaps can take on three types:
1. the input characteristics can be identical and the

difference is solely in the conditions
”

(c.g.. .r:g and y:g .r < y

.r:g and y:g x > = y)

subset of the input characteristics of the other domain,
so that there is some characteristic that is in one domain
and not the other:

(e.&. .r:g and yg.b x < y

.r:g and y g x < y)
Overlaps:

3 . or the overlap may be a combination of the two: [AI and [FI
[CI and [Dl

40 [A] and [F]: overlap on xl:(g) and x2:(b) and r=O
Option la applies to this set of overlapping clauses,

and therefore the user would be interrogated as follows:
Query: Given the following overlapping clauses:

Further, the overlap can occur within or between output g/x1:(g)>x2:(g,b) and r=O
output Characteristics. It is advantageous to resolve 45 [A] output b 1 xl:(g,b) < =x2:(b) [F]
overlaps between characteristics first so that the result- (the overlapping condition is: xl:(g) and x2:(b) and
ing output definition for the component would be com- r = ~) can the overlapping condition be assigned to the
plete. Afterwards, overlaps among clauses within an OCD for characteristic .‘b37?
output characteristic definition may be eliminated so The would yes, and process L1 would

50 subtract the intersecting characteristics from the OCD that a more concise OCD results.
For dealing with overlaps between OCDs, the fol-

lowing options are ranked in order of preference:
1 I Heuristics may be applied depending on the output

characteristics involved in the overlap. These heuristics
are patterned after the way such overlaps are handled 5 5
manually. For example,

(e.g.. .r:g and p‘g.b x < y

.r:g 3nd y:g .r > = . y)

for g:
Result:
output gIxl:(g)>x2:(g) and r=O [A]
Output blx1:(g3b)<=x2:(b) IF]
[C] and [D]: overlap on xl:(b) and x2:(g)

a. If the overlap is between a good characteristic and Option la applies to this set of overlapping
a bad characteristic, and if one of the overlapping
characteristics is a bad characteristic, then a con- the be:
servative assumption would shift the overlap to the 60
bad output Characteristic.

b. If the overlap is between a nil characteristic and a
good or bad characteristic, and if one of the over-

also, and after an afftrmative response to a user query,

output g , 1 1 (g) < = .r?:(g) [CI]

lapping characteristics is a nil characteristic, then a
reasonable asumption would shift the overlap to 65

, .XI (61 <= .rL:(g) and r = [Cl]
~ .tI.(b) > .xZ.(g,b) and r = 0 (D] output b

the nil characteristic.
2. It is possible that some of the characteristic possi- RESULT AFTER OVERLAPS BETWEEN

bilities in the condition are not possible. For example, a OCDs H A V E BEEN RESOLVED:

5,014,220
51 52

incorrect in RMAS if an impossible combination is
modeled in the OCD. However, it would be erroneous
if a combination that is possible is not modeled. There-
fore, by modeling all combinations (as may be done if

5 the user enters the local reliability models for RMAS),
the state space may be larger than necessary, but the
model would not be less correct.

A detailed description of the LMG process is dis-
closed in conjunction with FIGS. 27 to 56.

l o Referring now to FIG. 27, the L M G process begins

tions have been phase 3 OCD the unreliable condition to be analyzed. Unreliable con-
and detects overlaps between clauses within an OCD. It ditions are input by the user through the user interface
is not as critical that these overlaps be eliminated since 15 218 shown in FIG. 2. The type of unreliable condition
it is only the overlaps between OCDs that make the . being input may be any aberration of a function, the
resulting model ambiguous or incomplete. However, most typical being unreliable output characteristics of a
phase 3 detects clauses within an OCD that are subsets high level function such as this function outputted bad
of other clauses and eliminates that subset clause from output.
the final OCD. This reduces the size of the final OCD. 2o Control then passes to item 2704 which, given the

Referring to the OCD in [20], the following overlaps unreliable condition, the system references the BBD for
within output characteristic definitions are identified: the component related for that function and finds the

1. [A] A N D [Cl] function that is the function referenced by the unreliable
2. [B] A N D [Cl] condition. For example, in the case of the output of a
3. [D] A N D [F] 25 particular function being corrupted, then item 2704 will
4. [E] A N D [F] locate the component that performs that function. A
The first and fourth overlaps above are suPer/subset function may be a computer system which computes an

clauses. Therefore, clause [A] and [E] may be elimi- output.
nated. Combining these, the resulting OCD is: Control then passes to process 2706, designated pro-

HAVE 30 cess I f , which indicates an intermediate level process.
BEEN RESOLVED: Since the components are defined in the system defini-

tion hierarchically for all intermediate level functions,
process I1 is executed to trace its subcomponents in
order to determine the local reliability models for its

35 lowest level subcomponents. Once process 11 is com-
plete, item 2708 outputs the results to the user interface.

Process I1 is shown in conjunction with FIG. 28.
Process I1 begins with item 2802 which orders the sub-
components that perform the given function and places

Finally, to produce the final output characteristic Jo these subcomponents on a queue of subcomponents to
be analyzed. For example, if the component has two
subcomponents A and B, wherein the input goes to A,
and A outputs to B, and B outputs what is the final
output for the parent, A and B would be analyzed in

SEPARATE CONDITION FROM INPUT 45 sequential order. For parallel subcomponents the order

Process controI then passes to conditional block 2804,
which determines whether there are any more subcom-
ponents to be analyzed on the queue. If there are no

50 more subcomponents to be analyzed, process control
returns to the point where the process was entered. If
there are more subcomponents to analyze, then item
2806 retrieves the next subcomponent from the queue of

55 subcomponents to analyze and then control passes to
ELIMINATE FULLY ENUMERATED VARI- control block 2808 which determines if the function that

ABLES: is being analyzed is cyclic and the next subcomponent
There are no variables in this OCD that have fully to be analyzed has no new characteristics that need to

enumerated characteristic sets. With the clause delinea- be analyzed, then control returns to conditional block
tor 0' I '9 replaced by the logical OR. this OCD is identi- 60 2804 to analyze the next subcomponent, IF, for exam-
cal to the one presented in [3]. Note that the final O C D ple, Some subcomponents may be related in a Cyclic
for this component is not fully defined. For example, it manner, such as A calls B and B calls A. In this case, the
does not specify the output characteristic for all cases parent of the subcomponents will continue analyzing
that xZ:(n). However, it is defined on all input charac- until there are no new characteristics of the data to be
teristics given to L1. This is one way in which the 65 analyzed. At this point, for the most part, processing
model created by the L M C is superior to a user defined will end, but it is necessary to iterate through the rest of
model on all inputs in that there are possibly less condi- the subcomponents in case there are parallel subcompo-
tions for RMAS to consider. The model will not be nents to be analyzed.

uutpul g 1 +I.fg) > +2:(g) and r = 0 [A]

1 r l (g.6) > .r2.(g) and r = 1 [B].[C2]

1 .TI.(@ < = .r?:(g) [CI]
ouiput b ~ .rl:(6) > .x?.(g.6) and r = 0 [D]

~ 1 1 (g .6) > x 2 . (6) and r = I [E]

' r l (g .6) <= x 2 : (b) [F]
output n \ :rl:fn) [GI

Once overlaps between output characteristic defini- with with input query 2702 which inputs from the user

RESULT AFTER OVERLAPS

output y ' .vl.(g,6) > .r?:(g) And r = I [B]

1 .xl:(g) > .x?.(g) [Cl]

~ .r l . (6) > rZXg.6) and r = 0 [D]

i rl.(g,6) < = .r?:tb) [F]

ourput 6

outpot ' .xi (0) [G)

definition. the conditions are separated from the charac-
teristics. Also, any variables in clauses that involve an
enumeration of all possible data characteristics may be
eliminated from the clause.

CHARACTERISTIC: of analysis is arbitrary.

outpui g 1 .xl:(g.6) and x 2 (g) and r = I (XI > .r2) [B]

1 xl:(g)andxZ(g)(.rl > x2) [Cl]

output b 1 xl:(6) and x2. (g ,b) and r = 0 (+ I > z?) [D]

i xl.(g.bl and x2.(6) (.rI < = .c?) [F]

output n ~ r l (n) (XI > .x?) [O]

5,O 14,220
53 54

Control then passes to conditional block 2810 which b. Propagating these characteristics through func-
determines, for a subcomponent to analyze, if that sub- tions and conditions in which the variables are
component is also an intermediate level component. In involved in order to define characteristics for other
this case, process I1 is executed recursively according t o variables.
process block 2812. This is identical to process 2706. If 5 Three special attributes of the substitution/propaga-
the component is at the lowest level, process 2814 (Ll) tion phase are discussed herein:
is invoked to analyze the lowest level component and 1. Define the set of characteristics possibilities for a
derive or define a local reliability model for that lowest variable at an instance in the analysis as the variable’s
level component. Once that local reliability model is characteristic set. As a result of propagating character-
returned to conditional block 2804 from 2814 or 2812. 10 istics through an operation or a function, other vari-
Conditional block 2804 is invoked to get the next sub- ables’ characteristic sets may be changed. These
component that receives those inputs and the process changes must be substituted for all instances of these
continues. variables and propagated through any other affected

Process 2814 (Ll) is called to generate the mo’del for functions. Therefore, at any one time in phase 1, there
the lowest level component and it is shown in further 15 will be many variables whose characteristics must be
detail in conjunction with FIG. 29. Process L1 is called substituted/propagated. In order to perform this in an
by process block 2814 of FIG. 28 and it begins with organized manner, a predefined substitution/propaga-
iterative block 2902 which iterates for each component tion is performed until all variables that are affected
state (which may be the failure state or a nonfailed have had their new characteristic sets substituted/-
state). When finished analyzing all component states, 20 propagated. This is a depth-first approach handled by
control passes to process block 2904, which combines the Sub/Prop process of FIG. 31.
the output characteristic definitions for each compo- 2. Intermediate variable characteristic possibilities are
nent state into a single output characteristic definition dependent on other variable characteristic sets. For
and transitions that then comprise the local reliability example, an intermediate variable may have a charac-
model and this local reliability model is then returned to 25 teristic of “g” only if an input variable’s characteristic is
conditional block 2804 of FIG. 28. Therefore, for each “g” according to analysis of a previous sentence in the
component state, control enters iterative block 2906, function. When the intermediate variable characteris-
which iterates for each sentence in a given function. A tics are substituted/propagated. these dependencies
sentence is delineated in the definition by a semicolon. must be substituted in also. This is performed by condi-
For each sentence, iterative block 2908 is entered to 30 tional loop 3005.
iterate for each clause of the sentence. As noted above, 3 Further, for a given set of variables to be substituted
a clause is delineated by a vertical bar in the functional at any one time, a priority ordering that favors interme-
specification. For each clause within each sentence diate variable substitutions before input characteristic
control enters process block 2910 which is generally substitutions is used. This reduces the number of substi-
referred to as Phase 1. Phase 1 propagates all input 35 tutions that must be made since (as explained above)
characteristics through the given sentence until output conditions upon which the intermediate variable char-
characteristics ar defined. Process flow then continues acteristics depend are substituted in with these charac-
to process block 2912 which is generally referred to as teristics.
Phase 2. Substitution:

for each output characteristic is defined for that clause.
After process 2912 is complete, control returns to itera-
tive block 2908 which analyzes the next clause. After all
clauses have been analyzed, control passes to process
block 2914 which is generally referred to as Phase 3.

In Phase 3, all output characteristic definitions for
each output characteristic, for example, good, bad and
nil are combined for all the clauses and then each new
output characteristic definition is analyzed to eliminate Propagation:
overlaps between output characteristics. When process 50 Propagation consists of the following: For each in-
2914 is complete, the output characteristics for the low- stance of the variable, the variable characteristics are
est level model have been defined and control returns to propagated through the operation or condition in which
iterative block 2906 which analyzes the next sentence in the variable is involved. These conditions and opera-
the function. After all sentences have been analyzed tions may be nil-sensitive operations, non-nil-sensitive
control returns to iterative block 2902 to analyze the 55 operations, or Boolean comparators such as =, f .
next component state. After all component states have Other Boolean comparators such as <, >, < =, > =,
been analyzed, then an output Characteristic definition are not propagated since the result of the Boolean com-
is defined and process control returns t o process L2 parison is dependent on the value of the variables in-
(2904). volved, and these values are not generally known. For

The Phase 1 process which was called by process 60 example, what is the result of the comparison x > y
block 2910 in FIG. 29 is shown in greater detail in con- when x has the characteristic of “b”? The result is de-
junction with FIG. 30. As shown in the example, the pendent on the value of x, and that value is not known.
first phase is responsible for propagating all input char- Therefore, assumptions regarding Boolean comparators
acteristics and local variable characteristics through the are handled interactively with the user in Phase 3. The
current sentence until output characteristics are de- 65 propagation process is introduced in conjunction with
fined. This propagation is accomplished through an FIG. 33. The following details the propagation rules for
iteration of nil-sensitive and non-nil-sensitive operations and equal-

a. Substituting characteristics in for variables, and i ty comparators.

In process 2912, an output characteristic definition 40 Substitution is performed as follows: Given a set of
characteristics to be substituted in for a variable, the
intersection of these characteristics with the character-
istics currently associated with the variable is calcu-
lated. This intersection is then considered to be the new

45 set of characteristics for the variable. Each instance of
the variable in the clause is then updated with the new
set of characteristics. This is handled by the substitute
subroutine of FIG. 32.

5,014,220
55

A. Nil-sensitive operations:
If the variable is a parameter in a nil-sensitive opera-

tion, and if all parameters of the operation are charac-
terized (Le., all have characteristics currently associated
with them), then the nil-sensitive propagation rules are 5
applied to separate the clause into three types of clauses
(i.e., for “g,b,n” characteristic outputs) according to the
parameters, characteristics:

Nil-sensitive propagation rules:
1. “G” clause: 10
If all parameters have a characteristic possibility of

”g”, then it is necessary t o create a clause in which the
result of the function is assigned characteristic “g” and
all parameters for this clause are assigned characteristic
“g”. This is illustrated in conjunction with FIG. 34A, I5
items 3402 to 3408.

2. “N” clauses:
I f there is any parameter with an “n” characteristic,

then it is necessary to create a clause for each variable
x(i) that has an “n” characteristic in which the result of 20
the function is assigned characteristic “n”, the variable
x(i) is assigned the characteristic “n”, and assign all
other variables, x(k) where k>i , (according to some
predetermined ordering) retain their currently assigned
characteristics (Le., no changes to these variable charac- 25
teristics). Further, the present process removes from
variables, xu) where j < i, the characteristic “n”. Since
no two clauses may address intersecting conditions, the
clauses must define an exclusive OR condition, instead
of simply a Boolean inclusive OR. The last change to 30
the transitions for xc), where j < i satisfies this. If any
resulting variable sets are empty (i.e., the only charac-
teristic was “n” for that set), then the present process
removes the clause. This is illustrated in items 3410 to
3422 of FIG. 34A. 35

3. “B” clauses:
If there are no parameters that have “n” as the only

characteristic possibility and there is any parameter
with a “b” characteristic, then it is necessary to create a
clause for each variable x(i) that has a “b” characteristic 40
possibility if all variables xu), where j < i , have a charac-
teristic possibility “g”.

[3] The new clause is formed by:
a. assigning the variable x(i) a “b” characteristic,
b. the result of the function is assigned characteristic 45

“b”,
c. all variables x(i) for j < i are assigned the “g” char-

acteristic,
d. assign all other variables, x(k) where k>i, (accord-

ing to some predetermined ordering) to retain their 50
currently assigned characteristic sets with “n” re-
moved.

This additional condition also ensures that the clauses
define an exclusive OR. However, removing “b” from
the previous variables is not sufficient since the charac- 55
teristic of “n” is not allowed either. Therefore, all vari-
ables prior to this variable must have a “g” characteris-
tic. A flowchart for nil-sensitive propagation is shown
in FIGS. 34A-34B2.

B. Non-nil-sensitive operations: 60
If the variable is a parameter in a non-nil-sensitive

operation, and if all parameters of the operation are
characterized (Le., all have characteristics currently
associated with them), then the non-nil-sensitive propa-
gation rules are applied to separate the clause into three 65
types of clauses (Le., for “g,b,n” characteristic outputs
of the function) according to the parameters’ character-
istics:

56
Non-nil-sensitive propagation rules are discussed in

I . “G” clause:
If all parameters have a characteristic possibility of

“g”. then it is necessary to create a clause’in which the
result of the function is assigned characteristic “g” and
all parameters for this clause are assigned characteristic
“g”. This is illustrated in FIG. 37, items 3702 to 3708.

more detail in conjunction with FIG. 37.

2. “N” clauses:
If all parameters have a characteristic possibility of

“n”, then it is necessary to create a clause in which the
result of the function is assigned characteristic “n” and
all parameters for this clause are assigned characteristic
“n”.

3. “B” clauses:
If there is any parameter with a “b” characteristic,

then it is necessary to create a clause for each variable
x(i) that has a “b* characteristic in which the result of
the function is assigned characteristic “b”, the variable
x(i) is assigned the characteristic “b”, and the present
process assigns all other variables, x(k) where k>i ,
(according to some predetermined ordering) to retain
their currently assigned characteristics (i.e., no changes
to these variable characteristics). Further, the present
process removes from variables, xc) where j < i , the
characteristic “b”. Since no two clauses may address
intersecting conditions, the clauses must define an ex-
clusive O R condition, instead of simply a Boolean inclu-
sive OR. The last change to the transitions for xu),
where j < i satisfies this. If any resulting variable sets are
empty (Le., the only characteristic was “n” for that set),
then remove the clause. A flowchart for non-nil-sensi-
tive propagation is shown in FIG. 33.

C. Condition Propagation Rules are discussed in
more detail in conjunction with FIG. 39, wherein:

there are three types of assumptions which may apply
to Boolean comparators for equality (=) and inequality
(< >). These are:

1. x:g < > y:b assumption, which is discussed in more
detail in conjunctjon with FIG. 40: Assume that a vari-
able that is ‘‘g” is never equal to a variable that is “b”.
In other words, a condition “x:g= y:b” always fails.
Again, the equality of two variables cannot be deter-
mined without knowledge of their values. However,
most analysts assume that if a value is corrupted by
some failure, it would not be equal to another variable
that was not corrupted. To verify this assumption, the
following rule is defined:

Condition: equality condition in the clause (x:(set I -
)=y:(set2)) where setl or set2 has “b” and the other set
has “g”.

To determine whether it can be assumed that x:b<-
> y:g and x:g < > y b :

Action: Create 4 separate clauses:
1. if “g” in set 1 then remove “b” from set2
2. if “b” in set 1 then remove “g” from set2
3. if “g” in set2 then remove “b” from set 1
4. if “b” in set2 then remove “g” from setl
Eliminate duplicate clauses and clauses with setl or

set2=0.
2. x:g=y:g assumption which is discussed in more

detail in conjunction with FIG. 41: This assumption is
common for comparing variables that relate to the same
redundant component type. It assumes that in compar-
ing two variables that are both “g” (Le., not corrupted),
the equality test will hold. To verify that this assurnp-
tion holds, the following rule is defined:

57
5,O 14,220

58
Condition: Inequality Operation (x:(set 1) < > y:(-

To determine whether it can be assumed that

T w o clauses are created:
1. if “g” in set 1 then remove “g” from set2
2. if “g” in set2 then remove “g” from set1
Eliminate duplicate clauses and clauses with setl or

set2=0.
3. x:b=y:b assumption which is discussed in conjunc-

tion with FIG. 42: This assumption is often used as a
simplifying assumption to handle a worst case analysis.
For example, the analysis of a voter component that
outputs the majority of the inputs may assume a worst
case scenario in which all corrupted (“b”) inputs have
that same value, and therefore, may outvote a “g”
value. To verify that this assumption holds, the follow-
ing rule is defined:

Condition: Inequality Operation ((x:(set 1) < > y:(-
set2)) where setl and set2 have “b”:

To determine whether it can be assumed that
x b = y:b, then:

1. if “b” in setl then remove “b” from set2
2. if “b” in setl then remove “b” from set2
Eliminate duplicate clauses and clauses with setl o r

set2=0.
4. Nil comparison assumption: This assumption is the

only one applied to non-equality Boolean comparators.
As illustrated in the previous example, it assumes that a
comparison to a nil value always fails. The rule is de-
fined as follows:

For Boolean comparators (=, <, >, < =. > =)
where setl or set2 contain an “n” characteristic:

1. Remove “n” from the setl and set2
2. Create a clause: N 1 {x:(n))AND {y:(n)} where {}

indicates inclusion only if the variable has an “n” char-
acteristic. This is described in more detail in conjunc-
tion with FIG. 42B.

These four assumptions have been identified as com-
mon assumptions made by analysts. As further assump-
tions are identified, interactive inquiries may be added
to this list. Further reductions are applied in Phase 3.

Phase 1 of the Local Model Generator is described in
more detail in conjunction with FIG. 30. The subrou-
tine of FIG. 30, when invoked, begins with iterative
block 3002, which iterates for all variables in a particu-
lar clause that have characteristics currently associated
with them. At the beginning of this subroutine, input
characteristics are processed. For all variables that have
characteristics enter subroutine process block 3004,
which performs a combination of substitution/propaga-
tion to propagate those characteristics through the sen-
tence or through the clause being analyzed, once sub-
stitute/propagation returns, control flows to iterative
block 3006, which iterates for all conditions affected by
the above-described substitution/propagation subrou-
tine. In other words, for all variables affected, and for
all instances of a single variable, each instance is in-
volved in a different condition or operation. It is neces-
sary to examine each one of the conditions associated
with that variable to perform a substitution/propaga-
tion with process 3008, which is the same as the sub-
stitute/propagation process which was performed in
process 3004.

Returning to process block 3004, after a particular
variable instance has been substituted and propagated
through the function, then iterative block 3006 per-
forms an iterative loop. For some variables in sentences

set2)) where setl and set2 have “g”.

x:g= y:g:

that are intermediate sentences, in the function, the
variable conditions or characteristics have associated
with them other variable characteristics which must be
true in order for this variable to have this particular

5 characteristic and therefore, for those other variable
characteristics the same substitute propagation is per-
formed in process 3008.

FIG. 31 shows in more detail the substitute/propaga-
tion process block 3004 and 3008. Substitute/propaga-

10 tion process block 3004 begins with process 3102 (sub-
stitute), which performs the actual substituting of char-
acteristics for all variables in the clause. Control then
passes to iterative block 3104 (loop 3103) which iterates
for each operation or condition which the variable is

15 found in; nnd for each operation or condition, control
passes to process 3106, which propagates the character-
istics through the condition. Control then passes to
iterative block 3108 (in loop 3107), which iterates for
each new variable affected by that propagation. There-

20 fore, it recursively calls process 3110, which is identical
to process 3004. Once all new variables affected have
been analyzed, control returns to iterative block 3104,
which then analyzes the next operation involved by that
variable. Therefore, the present process is a depth-first

25 substitution scenario in w,hich a characteristic is substi-
tuted in the clause and then propagated across a func-
tion which affects other variables. T h e other variables
are then substituted in the characteristics; any propaga-
tions associated with that variable are performed until

30 the process is complete, with any effects for a single
variable substitution computed, and then as each level is
processed, the characteristic is substituted in the next
characteristic for the variable.

Referring now to FIG. 32, the substitute subroutine
35 called by the subroutine of FIG. 31 is shown in detail.

This process begins with iterative block 3202, which
iterates for all occurrences of the variable in the clause
and locates the intersection of the new characteristics
that must be substituted in those characteristics which

40 are currently assigned to that variable. Once the inter-
sections are located, they are returned to become a new
set which is substituted for the next instance of the
variable for a new intersection. When completed, itera-
tive block 3204 has produced the intersections of all

45 characteristics for that variable. Intersections are de-
fined as a set intersection.

Once the intersections are located, control passes to
iterative block 3206, which again iterates, for all vari-
ables, and passes control to item 3208, which substitutes

50 intersection sets into each occurence of the variable.
When all of the occurrences for the variables in the

clause have been assigned a new characteristic set by
iterative block 3206, then control passes to iterative
block 3104 of FIG. 31.

Referring to FIG. 33, process 3106, designated propa-
gation, is described in more detail. Process 3106 begins
with conditional block 3302, which determines the type
of operation being propagated across. The operation
may be one of three types. The operation may be a

60 nil-sensitive function, it may be a condition, o r i t may be
a non-nil-sensitive function. A nil-sensitive function is a
general category of functions for which the parameters
of the function can take on characteristics of good. bad
and nil. Nil-sensitive functions are those in which the

65 output is nil or not existent if any of the parameters are
nil. Non-nil-sensitive functions are those functions in
which the output is insensitive to nil functions or nil
parameters. Most mathematical functions mag be con-

55

5,014,220
59 60

sidered nil-sensitive. A voter may be considered a non- characteristic, then conditional block 3410 determines
nil-sensitive function. For example, a voter votes the whether there is at least one variable in the function that
inputs that it has and if an input is nil then it votes on the has a nil characteristic and, if so, then a set of clauses for
other inputs. It is always UP t o the discretion of the user each variable possibility of nil is generated. Therefore,
if the user wants to define a new type; the structure 5 for each variable that has a possibility of nil it is desir-
exists for defining the new function. able have a set of clauses which indicates which vari-

Voters are only one type of component. Other exam- abies are nil. T h e output is nil “IF’ the variable is nil
Pies Of components are components* adders* OR for all clauses. A problem is that all clauses must be

and communication interfaces which may be mutually exclusive with no overlapping characteristics,

purpose of reliability analysis. In other words, failure
modes are best characterized by the effects on their
outputs. Most components may be characterized as
input/output components. It is the specific function
provided by the component which differentiates one

x(2) are true. Therefore, make exclusive OR lx(l)l:n, designation is a useful method of distinguishing the
functions of components. For example, an adder corn- 1x(2)/:n AND
ponent may be defined which adds A and B. H ~ ~ ~ ~ ~ ~ , Iterative block 3412 iterates for all variables that have
it is necessary to determine the result of adding A and B 2o a possibility of an N characteristic. Item 3414 is selected
when A is bad. Most commonly, it is assumed that the to a which states:
output is going to be bad. Therefore, instead of requir-
ing the user to specify in a mathematical equation for
analysis, a set of formulas is defined for propagating
characteristics through these functions. Most functions 3416 which
will act according to one of these defined formulas, 25 iterates for all variables xu)<i in the order assigned to
Therefore, if the is able to indicate that this is a the variables in the clauses. For all variables less than
nil-sensitive or a non-nil-sensitive function, it is not the variable x(i), the clause xu) is appended by item
necessary to know the values which contributed to an 3418 and x(j) has a set of characteristics that has nil
output being bad, but rather only that the output is 3o removed from the characteristic definition. This ensures
corrupted in some way. that no clauses overlap.

Once the type of operation is identified by condi- After all variables xu), for U)<(i) have been ana-
tional block 3302, if a nil-sensitive function is detected, lyzed, control passes to iterative block 3420, which
process control invokes conditional block 3304, which iterates for those variables x(k), where k is greater than
determines if all operands or parameters for this func- 35 i in the function, and for each of those variables, the
tion have characteristics defined. If not, then the func- clause is appended by item 3422 in which the variable
tion cannot be analyzed or propagated yet. Therefore, characteristic maintains the same characteristic as the
control returns to conditional block 3108. However, if old characteristics. After all variables x(k), k greater
all operands have characteristics, then control enters than (i) have been analyzed, control returns to iterative
process block 3306, which propagates the characteris- 4o block 3412, which analyzes the next characteristic to
tics through the nil-sensitive function as defined in create the next clause. After all characteristics have
FIGS. 34A-34B2. If the type of operation, according to been analyzed, control passes to conditional block 3424,
control block 3302, is a non-nil-sensitive function, con- which determines if there js no variable that has a nil
trol enters conditional block 3308, which anah3ouSlY possibility as the only characteristic possibility. Process
determines if all operands forthat function havecharac- 45 block is then called 3426 to create the set of clauses that
teristics; and if so, process block 3310 is executed to have an output of bad. If, however, there is a variable in
propagate through the non-nil-sensitive function. If all our function parameter list which has a characteristic
operands have not been defined, process Control returns possibility of only nil, then no bad clauses can be cre-
to conditional block 3108. Finally, if the operation is a ated since it.s a nil-sensitive function and

test, then control enters “condition propagation” pro- after a]] the new clauses have been created, to append

Of many Other types Of for the 10 therefore, an exclusive OR condition is required.
For example:
x(l):n or x(2):n is
I x(1) I :n is clause 1
1 x(2) 1 :n is clause 2

clauses wherein:

from the other. The ni]-sensitive and non-nil-sensitive ” by Overlap (both are true) when ‘(‘1 and

x(n):n

output =ni l . “ I F ” . \ (i) = 1111.

lhen passes to iterative

condition such as a greater than, less than Or equality 5o process control passes to item 3428. Item 3428 is called

cess 3312? which propagates through the after the rest of the information to the clause that existed in
the old clauses and replace the old clause with the new which control returns to conditional block 3108.

34B1 and 34B2’ the clause just created. Also, meaningless clauses are elimi-
nil-sensitive propagation subroutine 3310 is described in 5 5 nated. Control then passes to item 3430, which replaces
detail. When invoked, control block 3402 determines if the old clause with the new set of clauses on the clause all variables in the clause have a possible characteristic ,. .

Referring now to

of x:g and, if so, a new clause is created which is defined
according to item 3404, which is initialized with:

‘IsK.
Referring now to FIG. 35, the propagation clause

cleanuo Drocess 3428 begins with iterative block 3502
0ulpuC:g: .*IF.:

. - I

60 which iterates for each new clause created. Control
then passes to iterative block 3504 which iterates for

then iterative block 3406 iterates for ail the variables in each variable in that new clause. Control then passes to
the clause and item 3408 appends to the new clause an conditional block 3506, which checks to see if the vari-
AND: g characteristic for that variable. When the pro- able has any characteristic possibilities in this clause,
cess represented by iterative block 3406 is complete, a 65 and, if it does not have any characteristic possibilities
single clause is generated which states that the output is (i.e., if the set of characteristic possibilities is empty)
good if all variables in the operation are good. If condi- then the clause can never be true, and control passes to
tional block 3402 determines no variable has a good item 3508 which removes that entire clause from the set

5.0 14,220
61

of new clauses. Control then passes to iterative block
3502 to analyze the next clause.

If, in conditional block 3506 the variable characteris-
tic set is not empty, then control returns to iterative
block 3504 to analyze the next variable in the clause.
After all variables in the clause have been analyzed and
none of them were empty, control passes to item 3510
which appends to the new clause the rest of the condi-
tions in the old clause with the exception of the function
that is being analyzed. When this is completed, control
returns to iterative block 3502 to analyze the next new
clause. When all clauses have been analyzed, control
returns to item 3430 in FIG. 34B1.

The number of clauses created by this algorithm
would be reduced if an a priori sorting of the variable
parameters would place those variables without “g”
Characteristics ahead of those variable characteristics
with “g”. This is illustrated in conjunction with FIG.
36.

FIG. 36 details the “NS create B clauses” process
3426. This process creates all clauses that define the bad
output characteristics for the nil sensitive function. Ini-
tially, iterative block 3602 is invoked, which iterates for
all variables x(i) which have a possible characteristic of
bad or B. For each such variable, conditional block
3604 tests to determine whether all variables xu), for
(j) <ti) have a possible characteristic of good and if any
of them do not have a characteristic possibility of good,
then control returns to iterative block 3602 to get the
next variable x(i) that has a characteristic of bad or “B”.
If all xu) for (j) <(i) have a characteristic possibility of
good, then control passes to item 3606, which initializes
a new clause that begins:

OUTPUT B IF x(i):B.

Control then passes to iterative block 3608, which
iterates for all variables xu), for u)<(i). Control then
passes to item 3610 which appends to the newly created
clause, the Boolean condition “AND xu): good”. Con-
trol then returns to iterative block 3608 to iterate for the
next variable. After all such variables have been ana-
lyzed, control passes to iterative block 3610, which
iterates for all variables x(k), for (k)>(i) where x(k) has
a possibility of a nil value. In this case, control flows to
item 3612. which sets the new characteristic set “Q” for
that variable to the old set but removes nil or “N” from
that set. Control then passes to item 3614, which ap-
pends the boolean to the existing new clause and x(k) is
of the set with nil removed. This is represented by the
expression:

r(k):Q

After that item has been analyzed, control returns to
iterative block 3610 to analyze the next variable X(k).
After all variables have been analyzed, control returns
to item 3428 in FIG. 34B1.

FIG. 37 details the processing involved for process
block “non-nil-sensitive propagation” 3310, which was
referred to in FIG. 33. Process 3310 begins with a con-
ditional block 3702 which determines that all the vari-
ables have a characteristic possibility of good or G, and
if so, then item 3704 creates a clause that begins:

outpu~:G IF:

and control then passes to iterative block 3706, which
iterates for all variables x(i) in the function. Control

5

10

15

20

2s

30

3s

40

45

50

5 s

60

65

62
then passes to item 3708 which appends to the new
clause the Boolean:

A N D X(I):G

Control then returns to iterative block 3706 to iterate
for the next variables. After all such variables have been
analyzed, conditional block 3710 is entered which tests
to see if all variables have a characteristic of nil or “N”
possibility. Only if all variables have a characteristic of
N possibility is item 3712 entered. Item 3712 creates a
clause that begins:

0uiput.N IF:

and then control passes to iterative block 3714, which
iterates for all variables xu), and control passes to item
3716, which appends to the newly created clause the
Boolean:

A K D ‘c(i).N

Control then returns to iterative block 3714 until all
variables have been analyzed. Control then passes to
process block 3718. which creates all clauses that exist
for bad characteristics. After process block 3718 is exe-
cuted, control returns to process 3720, which is the
propagation clause cleanup process discussed in refer-
ence to FIG. 35 and which is identical to process block
3428. Control then returns from process block 3720 to
item 3722 which replaces the old clauses with the new
clauses on the clause list. After which, control returns
to conditional block 3108 according to FIG. 33.

FIG. 38 describes the process 3718 called by the
process shown in FIG. 37. Process 3718, “NNS create B
clauses”, is called to create all clauses that reference bad
characteristics or define the bad characteristics for that
function, and it begins with an iterative block 3802,
which iterates for each variable x(j) that has a charac-
teristic of bad or B. Control then passes to control block
3804 which checks to see that all variables:

have a characteristic of G for good.
If there are any variables that do not have a charac-

teristic possibility of good or G, then control returns to
control block 3720; however, if all variables xu) have
characteristic possibility of good, then control passes to
item 3806, which creates a new clause that begins:

output B IF x(i):B

Control then passes to iterative block 3808, which
iterates for all variables:

xo). For o)<(i),

Item 3810 then appends for each of those variables a
Boolean:

A N D x u) G

and control then returns to iterative block 3808 to iter-
ate for the rest of the variables xu). After all such vari-
ables have been analyzed, control returns to iterative
block 3802 to get the next variable x(i) with characteris-
tic of B for bad.

5,O 14,220
63 64

Referring now to FIG. 39, the “condition propaga-
tion rules” process is shown in detail. This was process
3312, described in conjunction with FIG. 33. Initially,
conditional block 3902 checks to see if the condition is
of the form:

is corrupted. Therefore, the analyst makes assumptions
and the present invention cannot unilaterally make an
assumption that all conditions that are bad are always
going to fail. It is therefore necessary to interrogate the

5 user. So in this case the user is asked whether it can be
assumed that:

xiset I)=y:(set 2)
n.G#y:B for a particular x and y.

If so, then process block 3904 is invoked to check to
see if an assumption holds, and that assumption is: 10 If the user answers that the assumption can be made,

then the following changes are made to the clause.
Control enters conditional block 4004. which checks to x : (g) r y : (b)

determine whether the characteristic good is in Set 1,
Set 1 being the set for x and Set 2 being the set for y. If

is created by item
4006 with B being removed from Set 2. Conditional

Once process 3904 process control is passed
to conditional block 3906. Conditional block 3906 de-’ I~ it,s good in Set 1, then a new
termines whether the condition is of the form:

x:(set I)=>.(set 2) block 4008 then checks to determine whether bad (B) is
in Set 1; if B is in Set 1, then item 4010 creates a new
clause with good (G) removed from Set 2. Conditional

20 Block 4012 then checks to determine whether the con-
dition good is in Set 2 for the Y characters and then if
good is in Set 2, item 4014 removes bad from Set 1.
Conditional block 4016 then checks if bad is in Set 2; if
bad is in Set 2, then item 4018 removes good from Set 1.

25 Finally, item 4020 eliminates any new clauses in which
Set 1 or Set 2 have n o characteristics associated with
them, and combines any clauses that are duplicates of
each other. Control then returns to conditional block
3906.

The process of FIG. 41 tests the assumption rule:

N ~ ~ ~ : the symbols + and <, are equivaleit in the

If that form is detected, then control passes to process
present specification.

block 3908, which checks to see if the assumption:

1 (g)=y:Q)

may hold for this condition. In either case, returning
from process 3908, control passes to process 3910 to
check to see if the assumption:

30 x Ihi=!:(b)

may hold for this condition. After process 3910 is com- \ g= \ . : g
plete, control passes to 3911 to remove comparisons to
nil characteristics. After process 3911, Control passes to which are two variables wherein both characteristics
process block 3912, designated propagation cleanup 35 are equal.
clauses and discussed in conjunction with FIG. 35. The first step of process 3908 is an inquiry block 4102
When complete, control returns to conditional block which asks the if those characteristics being
3108 according to FIG. 33. Therefore, condition Propa- good are always assumed to be equivalent, and i f it is,
gation rules generally check to see if the condition ad- conditional block 4104 checks to determine whether
heres to some criteria, and if so, tests t o determine if 4o good is i n set

~f it is, item 4106
certain assumptions about the condition can be verified.
If these assumptions are verified, then some reduction in Conditional block 4108 the,, checks to see if good is

in set 2; if the characteristic good is in set 2 for variable the number of characteristics can be made.
process 3904 tests the y, then item 4110 creates a clause with good removed

45 from set 1 for variable x. Finally, item 4112 eliminates assumption:
clauses with set 1 or set 2 that have no characteristics
and combines common clauses. Control then returns to

42A.
50 Process 3910 begins with inquiry box 4202 which asks

for the
a =lause good removed from set 2.

Referring now to

x.(g)=x.(b)

Process 3904 begins with inquiry block 4002, which conditional 3912.
asks the user, if under this context in a particular clause,
can it be assumed that:

Process 3910 is shown in more detail in

the user if the assumption that:
x : (g k y (b t for all conditions

x(b)=y(b) can be made under all conditions

The reason the user must enter this information is that
under some conditions the system cannot arbitrarily 55
make the decision because it lacks the knowledge. F~~
example, in the case of a threshold analyzer, some char-
acteristic may be coming in that is bad, and the function
of this component is defined:

IF x(b)>?Oor x (b) < 3 0

If that assumption cannot be made7 then Program
control returns to item process 3912 of FIG. 39. If the
assumption can be held true* conditiona1 block 4204
checks to determine whether the characteristic bad is in
set 1. If it is, then item 4206 creates a new clause with

60 the characteristic bad removed from set 2. Conditional
block 4208 checks to determine whether the character-
istic bad is in set 2; if it is, item 4210 creates a new clause

Therefore, the threshold component cannot deter- with the characteristic bad removed from set 1. Finally,
mine if the variable x that is bad is greater than 30 or less item 4212 removes or eliminates the clauses with set 1
than 30. These assumptions model assumptions that 65 or set 2 equal to 0 and combines the common clauses.
analysts have to make in their analysis because of the Process control flow then returns to process 3912.
incomplete knowledge of failures. In other words, it is FIG. 42B shows in detail the operation of Phase 2 for
not possible to determine the manner in which the data process 3911. This process removes nil characteristics

5,014,220
65

from comparison operators since if is irrelevant to com-
pare variables that are “nil”. Control flow passes to
conditional block 4214 which checks to see if the char-
acteristic “nil” is in either variables characteristic set. If
it isn’t, control passes to 3912. If it is, control passes to
item 4216, which removes the characteristic “nil” from
the variables in the clause. Then control passes to item
4218, which creates a new clause which begins:

OUTPUT N IF

Control then passes to conditionaf block 4220, which
checks if “N” is in set 1. If it is, item 4222 appends to the
new clause:

A N D x:(n)

Control then passes to conditional block 4224, which
checks if “n” is in Set 2. If it is, item 4226 appends to the
new clause:

AND y (n)

Control then returns to 3912.
FIG. 43 shows in detail the operation of the Phase 2

process 2912 which was called by the process of FIG.
29. After all the substitutions and propagations have
been performed for the clause, the consequent part of
the clause (to the left of the 1 in the current functional
definition) is instantiated for each possible output char-
acteristic. There are three types of consequents to a
clause: a function, a variable, or a single characteristic.

I. Characteristic: If the consequent is a characteristic,
then no instantiation is necessary.

2. Variable: If the consequent is a variable, then a
separate clause is created for each characteristic associ-
ated with the variable. For each new clause, the charac-
teristic is substituted into the characteristic set for that
variable, and the substitution/propagation algorithm is
executed for the clause.

3. Function: If the consequent is a function, the ap-
propriate function propagation rules are applied to the
function (NS or NNS function propagation rules), and
the substitution/propagation algorithm is executed for
the clause.

Process 2912 begins with a conditional block 4302,
which, given a clause. examines the element to the left
of the vertical bar in the clause. Recall that vertical bars
are used to designate clauses and semicolons designate
sentences. The vertical bar indicates the form: the out-
put of the clause is an element if these particular condi-
tions exist. In this case, the consequent of the clause is
examined to determine what type of element it is. If the
element is a characteristic, no further processing is re-
quired because Phase 2 instantiates a clause for each
possible characteristic. In that case, control returns to
conditional block 2908 of FIG. 29.

If the element is a variable, then iterative block 4304
iterates for each characteristic of the variable in con-
junction with process block 4306, which invokes a sub-
stitute/propagate process which was defined in con-
junction with FIG. 31, and invokes that subprocess for
the particular characteristic to propagate that charac-
teristic back through the function. Control then returns
to iterate for the next characteristic. After all character-
istics have been instantiated through iterative block
4304, then control passes to item 4308, which then re-
moves any quantifiers which may have existed in the

5

IO

15

20

25

30

35

40

45

50

55

60

65

66
clause. When complete, control returns to iterative
block 2908.

If the element analyzed in conditional block 4302 is a
function, then control passes to conditional block 4310,
which determines what type of function it is. I f it is a
nil-sensitive function, then process block 4312 performs
a nil-sensitive propagation process which creates
clauses for each new characteristic; and if it is a non-nil-
sensitive function type, then process block 4314 per-
forms a non-nil-sensitive propagation process, which
was discussed in conjunction with FIG. 37, to create
clauses for each characteristic of that function type.
After all function characteristics have been instantiated,
control returns to iterative block 2908.

FIG. 44 details Phase 3, which was introduced in
FIG. 29 as process block 2914. The Phase 3 process is
performed after all sentences in the function have been
analyzed and the output characteristic definitions for
the last sentence have been defined. The output charac-
teristic definitions for each clause in the sentence are
combined according to a common output characteristic
to become new output characteristic definitions for
each characteristic.

After all clauses have been instantiated for the sen-
tence, the clauses are grouped, in Phase 3, according to
common output characteristics. Next, the algorithm
analyzes each group pair to detect overlapping condi-
tions between output characteristics. After all overlaps
between groups have been eliminated, each group is
analyzed to detect overlaps within an output character-
istic definition so that a more consise OCD is defined.
The previous example discussed the motivation for
eliminating overlapping conditions and the heuristics
used to resolve the conflicts. Therefore, such informa-
tion is not repeated in this section. After all conflicts
have been resolved within and between output charac-
teristic groups, the input characteristics are separated
from both the intermediate variable characteristics and
the internal boolean conditions. This is because the final
O C D for the subcomponent must define the output
characteristics of the function in terms of the input
characteristics and the state of the subcomponent. Ref-
erences to the state of the subcomponent are added in
process L2 after all failure and non-failure states have
defined OCDs.

Once clauses are combined in item 4402, item 4404 is
called to eliminate references to any noninput variable
characteristics. The variable itself will still be refer-
enced in the clause but the characteristics are not of
importance in this case, because only input characteris-
tics are processed in this process, and output character-
istics are defined in terms of input characteristics and
intermediate variable characteristics. Process block
4406 then is called to detect and correct overlaps be-
tween output characteristics. The purpose of this pro-
cess is to make sure that the output characteristics defi-
nitions do not overlap, or, in other words, there is no
input characteristic combination that is defined as pro-
ducing two different output characteristics.

After overlaps between output characteristics have
been corrected, process flow continues to process block
4408, which detects and corrects overlaps within each
output characteristic definition. Following process
4408, control passes to iterative block 4410, which iter-
ates for each output characteristic definition. This is
followed by nested iterative block 4412, which iterates
for each clause within each output characteristic defini-
tion and within each clause item 4414 separates the

5,O 14,220
67 68

conditions in the clause from the characteristics of the If there is some intersection, then there is a possibility
clause. that there’s still an overlap between the clauses and

After the conditions have been separated from the control passes to item 4706 which adds x to the list of
characteristics, item 4416 eliminates any variables that possible conflict pairs and then control passes to itera-
involve the full enumeration of characteristics, good, 5 tive loop 4702. If at any time conditional block 4704
bad and nil. After iterative block 4412 has finished, determines the intersection equals Zero, the entire clause
control returns to iterative block 4 1 0 t o analyze the is not overlapping and control returns conditional block
next output to characteristic definition. Following this 4608.
control returns to conditional block 2906 of FIG. 29, Referring now t o FIG. 48, process 4610 is described
that will now analyze the next sentence. 10 in more detail. The purpose of process 4610 is to resolve

detail what is involved a conflict which may exist between two clauses, and
with detecting and correcting overlaps between output there are four options which may be taken. Options are
characteristics. The process of FIG. 45 is invoked invoked in the order of preference. The preference is

,,ition. w h e n invoked, iterative block 4502 iterates for 15 by users given, the same situation leading to options that

Statement ,,FOR I = to oC.9, where oc is the number are options taken by users. FIG. 48 indicates that pro-
of output characteristics: good, bad or nil, Iterative cesses are invoked, one resolution at a time, and process
block 4504 is then invoked iterate for each output 4802 is invoked to attempt to resolve a conflict through

20 resolution number 1. Upon return, process 4804 is in- characteristic greater than the current output character-

block 4806 checks to determine whether the conflict ble pair of output characteristics. For example, first still exists. If the conflict no longer exists, this process
ends and returns to process 4604. If the conflict still good and then bad are analyzed, then good and then nil

2 5 exists, then the process block 4808 is invoked to attempt are analyzed and then bad and then nil are analyzed in
a nested loop structure. Process block 4506 is then in- to resolve the conflict through resolution number and voked to check output characteristic I with output pair check process 4810 is invoked and the conflict is characteristic J to determine if any overlaps exist be- again tested by conditional block 4812, Failing a resol,,- tween any of the clauses between the two characteristic tion at this process control block 4814 is invoked

30 to resolve the conflict using resolution number 3. pairs.

further detail in conjunction with FIG. 46. Process 4506 flict is tested again by conditional block 4818 and failing
begins with an iterative loop 4602 which iterates for a conflict resolution at this stage, process block 4820 is
each clause in output characteristic I, as indicated by invoked necessarily resolves the conflict using
the statement: “for K equals 1 to NW’, where N(i) is a 35 resolution number 4. Control then returns to condi-
number of clauses with output characteristic I. This is tional block 4604.
followed by nested iterative block 4604 which iterates 1’9, is detailed in
for each clause L, wherein L equals 1 to NG) for the FIG. 49 and was invoked by conditional block 4812.
number of clauses in input characteristic G), to find each There are assumptions that are common~y used by
possible pair of characteristics between output clauses 40 analysts reduce or eliminate overlaps between char-
between output characteristics I and J. Process block acteristics. one assumption is the fact that i f a n overlap
4606 is invoked for processing each pair of clauses be- is between a good characteristic definition and a bad
tween two characteristic definitions. Process 4606 is characteristic definition and if one of the overlapping
responsible for checking two particular clauses detect- characteristic definitions is a bad characteristic for a
ing an overlap between those two clauses and that Pro- 45 variable, then a conservative assumption is to shift the

some manner, so once returned, control flows to condi- the bad output. Conditional block 4902 tests this condi-

the conflict list is empty, and if the conflict list is empty asks the user if the bad characteristic for the particular
then control returns to conditional block 4604, which 50 variable can be attributed to the output characteristic
iterates for the next paragraph. definition for all bad characteristics. If the analyst an-

If the conflict list is not empty, then control proceeds swers yes, then item 4906 removes the variable charac-
to process block 4610, which resolves conflicts between teristic for bad from good output characteristic defini-
those two clauses. After all clauses have been analyzed tion or OCD. If the analyst answers no, then control
for these two output characteristics, control flows to 55 passes to conditional block 4908. Conditional block
iterative block 4504. 4908 tests to determine if the overlap characteristic is

FIG. 47 discusses in more detail process “pair check” between two clauses, one clause being a nil output char-
4606. Pair check 4606 iterates, initially, with iterative acteristic definition clause and the other one being ei-
block 4702 for each variable x from I to N wherein N is ther a good or bad OCD clause. If it is between these
the number of input variables in the clause. For each 60 two types of clauses and the intersecting variable char-
variable, conditional block 4704 determines if the inter- acteristic is nil, then inquiry block 4910 is invoked to ask
section of characteristics between the two sets of char- user if the overlapping characteristic can be shifted to
acteristics for the same variable is empty. If that inter- the output characteristic definition for all nil outputs. If
section is empty and if there is no overlap between those the analyst answers yes, then item 4912 is invoked to
characteristic sets of this variable, then, at a minimum, it 65 remove the overlapping conditions from the OCD for
is known that the clauses are distinguished by that vari- good or bad. Control then returns to 4814.
able. Therefore, there is no overlap between those Referring now to FIG. 50, the resolution number 2
clauses, and control returns to conditional block 4608. routine 4808 is discussed in detail. Resolution number 2

FIG, 45 introduces in

detect overlaps between each output characteristic defi-

each output characteristic definition, as indicated by the

based upon, initially, Options that are most often taken

are less and less based upon logic and reason. These also

istic, Iterative blocks 4502 and 4504 analyze each possi- to re-execute the pair check and

Process 4506, designated “check I,J”, is discussed in ~ ~ ~ i ~ , check is invoked by process 4816, ~h~ con-

process 4802, designated

cess returns a list Of variables that Conflict O r Overlap in

tional block 4608 which checks to determine whether

difference (or those conditions that are in both cases) to

tion, and if that condition is satisfied, inquiry block 4904

5,014,220
70

begins with the iterative block 5002, which iterates for 5312 to give the user an opportunity to assign other
each condition in clause 1. For each condition in clause characteristics. Therefore, process 5312 invokes the
1 process block 5004 is invoked for that clause to in- same resolution number 4 recursively, until the user
teractively verify the assumptions. After each condition assigns a percentage to one or the other. If the user has
in clause 1 has been analyzed through loop 5002, itera- 5 assigned a percentage to at least one of the overlapping
tive block 5006 is invoked for the second clause and characteristics, then the process returns to iterative
each condition in this clause is analyzed through an block 4604.
identical process designated 5006 to iteratively verify The process of FIG. 54 is invoked after all overlaps
assumptions for Clause 2. After both clauses have been between output characteristics definitions have been
analyzed, control returns to process 4810. 10 resolved. Process 4408 iterates for each output charac-

Interactively verified assumptions are discussed in teristic definition and attempts to resolve overlaps
conjunction with FIG. 51. This process is invoked by within clauses for each output characteristic definition.
processes 5004 and 5006 of FIG. 50 and begins with an This isn't as critical as resolving overlaps between out-
iterative block 5102 which iterates for all pairs of char- put characteristic definitions. However, it is desirable to
acteristics, c in Set 1 and d in Set 2. For each pair of 15 reduce the state spaces. Therefore, the present process
characteristics, a query is asked of the user in inquiry attempts to detect where one clause is a subset of an-
block 5104 which asks the user if the condition being other clause, and in that case, it chooses the superset
analyzed is never true when c is the characteristic for clause and totally eliminates the subset clause.
variable x and d is the characteristic for variable y and The process begins with iterative block 5402, which
if this is always true, then the following reduction in the 20 iterates for each output characteristic definition clause
clauses can be made. Item 5106 creates a separate clause Q. For each output characteristic definition Q, nested
with d removed from Set 2 and then item 5108 creates block 5404 iterates for each clause, 1 to C, in the output
another clause for c removed from Set 1. Item 5110 characteristic definition. This is followed by a third
eliminates clauses that might have been created with Set nested iterative block 5406 which iterates for each other
1 or Set 2 empty and combines the two clauses into to a 25 clause given a particular clause so that every possible
single clause if they are the same clause. Control then combinations of clauses within a single output charac-
returns to iterative block 5102 to iterate for the rest of teristic definition is obtained. Given two clauses within
the pairs, and then finally after all pairs have been com- an output characteristic definition, process block 5408
pleted control returns to process 5002 or 5006, where performs the pair check function, discussed above, to
the paircheck routine will check for an overlap again. 30 determine if a conflict exists between two clauses. Then

Resolution number 3 is discussed in conjunction with conditional block 5410 determines if a conflict has been
FIG. 52. Failing resolutions number 1 or number 2, detected and if so process control block 5412 resolves
resolution number 3 begins with an iterative loop 5202 conflicts within a particular clause. If a conflict does not
which iterates for each variable in the conflict list. For exist, it checks the next pair through iterative block
each variable, inquiry block 5204 asks the user if the 35 5406. After all pairs have been analyzed and all output
intersection of the characteristics may be removed from characteristic definitions have been analyzed, control
one or the other of the output characteristic definitions. returns to iterative block 4410.
If the user answers yes, then item 5206 removes the Referring now to FIG. 55, the resolved conflicts
variable characteristic from the chosen output charac- routine 5412 is shown in detail. Process 5412 chooses
teristic definition and control returns to iterative loop 40 the clause that is a subset of the other clause. When
5202 to iterate for the other variables in the conflict list. invoked, conditional block 5502 determines whether
If the user answers no, that the intersection may not be clause A is a subset of clause B or clause B a subset of
attributed to either one or the other output characteris- clause A. If so, item 5504 removes the subset. If not,
tic definition exclusively, then control returns to itera- control returns to iterative block 5406.
tive block 5202 to iterate for the other variables in the 45 FIG. 56 describes process 2904 (L2), which is in-
conflict list. After all variables have been analyzed, voked after all output characteristic definitions have
control returns to process 4810. been defined for each component's state for all failure

Process 4820, designated resolution number 4, is dis- modes and for nonfailure states of the component.
cussed in more detail in conjunction with FIG. 53. Res- Process L2 is called after process L1 has analyzed
olution number 4 is invoked when resolutions 1,2 and 3 50 each failure mode function and the non-failed function
have not been successful. Resolution number 4 is always for a component. The purpose of process L2 is to com-
successful and it begins with an iterative block 5302 bine the OCDs for each failure mode state into a single
which iterates for each intersecting characteristic and OCD for the component. The algorithm for process L2
invokes inquiry block 5304 to ask the user to assign a is straightforward. For each output characteristic, a
percentage by which each of the overlapping character- 5 5 combined O C D is created by concatenating the failure
istic may be attributed to either output characteristic mode state variable and the O C D for the failure mode
definition. If the user answers yes, the percentage is state into a single clause. Thus, the combined O C D is
noted by item 5306 for that output characteristic. Con- defined as:
trol returns to inquiry block 5302 to ask the same ques-
tion for the intersecting variable Characteristics. After 60
the user has had a chance to assign probability t o all
characteristics, control passes to conditional block In the case of a voter component, if two failure modes
5308, which determines if the user has assigned a per- BAD, and NO-OP were also modeled for the voter,
centage to at least one of the overlapping characteris- process L1 would return the following OCDs for each
tics. If the user has not assigned any percentage to any 65 failure mode:
of them, then it outputs a message to the user in item
5310 instructing the user that at least one percentage has
to be assigned, and then resolution 4 is invoked again in

OUTPUT (output characteristic)
I F (OCD in Ll) A N D (fault state)
O R {next fault state}

OUTPUT y:b

OUTPUT y:n
I F VOTER-NOF T R A N T O VOTER-BAD;

5 ,O 14,220
71

The OCDs here are simplistic because in each case
the output characteristic is defined regardless of the
input characteristics. Nevertheless, this example illus-
trates how the OCDs for different failure modes can be
combined.

The OCDs defined for the voter under a non-failed
state as follows:

OUTPUT y:n I F ALL(x(i):n)
OUTPUT y:g IF #(x(i):g)> #(x(i):b)
OUTPUT y:b I F #(x(i):b)> #(x(i):g)
The combined OCD for y:g, y:b, and y:n is:

IF VOTER-NOF T R A N T O VOTER-NO-OP;

10

. OUTPUT y:g I F #(x(i):g)>#(x(i):b) A N D

OUTPUT y:b IF (#(x(i):b)>#(x(i):g) A N D
I5 VOTER-NOF

VOTER-NOF)
O R ({} A N D VOTER-BAD)

OUTPUT y:n I F (ALL(x(i):n) A N D VOTER-.
NOF) 20
OR ({} A N D VOTER-NO-OP)

where the {} indicates that no input conditions existed
for that failure mode’s OCD. Eliminating the {}, the
new OCDs are:

OUTPUT y:g I F #(x(i):g)>#(x(i):b) A N D 25

OUTPUT y:b I F (#(x(i):b)>#(x(i):g) A N D
VOTER-NOF

VOTER-NOF)
OR VOTER-BAD

NOF)
OUTPUT y:n I F (ALL(x(i):n) A N D VOTER-. 30

OR VOTER-NO-OP
All OCDs may be combined in this way to produce a

correct, combined set of OCDs for the component.
This, along with the transitions for each failure mode, 35
constitutes the local reliability model that is returned.

In order to reduce the OCDs, heuristics may be ap-
plied. These heuristics are based on semantic knowl-
edge of the condition variables (e.g., conditions 4o
X-BAD and X-NO-OP refer to the same component
failure mode and conditions x:b,x:g, and x:n refer to the
same variable characteristics). With this knowledge,
O C D clauses may be combined and possible conditions
eliminated so that the resulting OCD is reduced. For 45
example, one heuristic groups OCD clauses (in disjunc-
tive normal form) according to common input charac-
teristics (i.e., clauses that differ only by component
state). If the group of clauses represents all states for
that component, then the group may be replaced by a 50
single clause with the input characteristics only. Then,
to maintain consistency, a condition A N D NOT({input
conditions}) is added to other clauses. An example of
this heuristic follows:

Given the OCD: 55
OUTPUT N I F ((r=O O R r = 1) A N D XNO-OP)

O R ((r= 1) A N D XBAD)
O R (r= 1 and XNOF)

change the O C D into disjunctive normal form:
60

I = 0 AND XNO-OP [I]
r = I AND SNO-OP [2]
r = I .AND XBAD [3]
r = 1 AND XNOF [4]

65
where [l], [2], [3], and 141 identify the new clauses.
Attempt to group the clauses according to a common
input characteristic:

~~ ~

72
r=O: Only clause 1 contains this characteristic, and

all states of component X are not referenced in this
clause.

r = 1: Clauses [2], [3], and [4] can be grouped:

r= 1 and {XNOF.SBAD. SNO-OP)

Since all component states are represented in the
grouped clause, the group may be replaced by: r = l .
Next, the condition: NOT(r= I) , which is equivalent to
r=O, may be eliminated from the other clause ([l]) so
that the resulting OCD is:

OUTPUT N IF XNO-OP [I]
OR r = I [2-41

This process defines the local reliability model for the
output characteristic definition by creating the reliabil-
ity model as follows. The conditional block 5602 deter-
mines if no input characteristics were analyzed, and if so
then a single output characteristic definition of the
form:

ourpur good “ I F “ x <nor failed>

is returned by item 5604.
If this is not the case, then iterative block 5606 iterates

for each output characteristic and item 5608 creates a
combined output characteristic definition of the form:

ourput <characteri\tic > IF

Iterative loop 5610 then iterates for each state and
proceeds to conditional block 5612 which determines if
there is a clause for the characteristic in this state and if
so iterative block 5614 iterates for each clause that has
that characteristic and item 5616 appends to the newly
combined output characteristic definition the logical:

OR <sta[e>clause.

In other words, the present process creates the out-
put: the output is good “IF” the component is in a par-
ticular state and particular conditions hold. It then loops
for each clause or a component in the state and wherein
the conditions hold. The process then loops for the state
and appends for the next state, to produce a new state.
When complete, all clauses within all states are identi-
fied. The model is returned to item 5617 which creates
a transition for the state of the form:

F ?<-not failed tr3n~ition IO <state>
‘

After item 5617 is returned, process 5618 is invoked
to put all the new output characteristic definitions in
D N F form. Item 5620 then groups the clauses that dif-
fer only by state and which have the exact same input
characteristics. This will most likely occur if you have
only one or two input characteristics. Once grouped by
state and all states are represented in the group, accord-
ing to conditional block 5622, the whole group may be
replaced, according to item 5624, by a single clause
with only the input characteristic.

Item 5626 then eliminates the condition NOT input
characteristics in the other clauses if they exist, to pro-
vide a reduced set of clauses. Control returns to condi-
tional block 2804 to produce the final output of the
system.

5,014,220
73 74

In summary, a reliability model generator for use
with a reliability analysis tool has been described. Ac-
cordingly, other uses and modifications will be apparent
to persons of ordinary skill without departing from the
spirit and scope of this invention.

knowledge base for encoding a function and a reliability
model for each of a plurality of system components and
said memory for further storing a second knowledge
base for encoding a high level configuration of said

5 system and a failure mode for said high level configura-
tion, said method comprising the steps of:

identifying the intermediate subcomponents of said
system components and the failure modes for each
of said subcomponents which contribute to the
failure modes of said system components;

identifying the lower level subcomponents of said
intermediate level components and the failure
modes of each said lower level subcomponents
which contribute to the failure modes of said inter-
mediate level components;

inputting a set of inputs from said intermediate levels
component identified with said lower level compo-
nents for each of said identified lower level compo-
nents;

tracing the effects of all inputs through said lower
level components to determine resulting output
characteristics and transitions for possible failure
modes of said lower level components for each
operational state of said identified lower level com-
ponents; and

tic conditions of said intermediate and lower level
components to produce a global reliability model
for said high level system configuration.

7. The method of claim 6 wherein said step of defin-

matically performing failure mode effect analysis on
said components.

reliability model generator, said reliability model for use
with a reliability analysis tool, said reliability model
generator comprising a computer system having a mem-
ory said memory for storing a first knowledge base of

4o encoding definitions of the function and reliability of a

We claim:
1. A computer system for generating reliability mod-

a first memory having stored therein a first knowl-
edge base for storing a plurality of low level reli- 10
ability models which represent the reliability char-
acteristics for low level system components;

a second memory having stored therein a second
knowledge base for storing definitions of the inter-
relationship of said low level models based on a I5
desired system configuration; and

means for aggregating the low level reliability models
stored in said first knowledge base into a single
reliability model based on the system configuration
definitions stored in said second knowledge base. 20

2. The computer system of claim 1 further including
means for manually inputting reliability parameters into
said first knowledge base said, reliability parameters
corresponding to individual components; and

els comprising, in combination:

means for automatically generating low level reliabil- 25

parameters for individual components and for stor-
ing said low level reliability models in said first
knowledge base.

3. A reliability model generator comprising a pro- 30

ity based On said defined aggregating failure mode states and input characteris-

grammed computer, memory means for storing
a first knowledge base, said first knowledge base for ing said component models the step Of auto-

defining a plurality of basic components in terms of
a plurality of component input and output charac-

components wherein said output characteristics are
affected by said failure modes, and further wherein
said component characteristics describe
nent operation independent of any system configu-
ration, said memory

a second knowledge base, said second knowledge
base for storing desired system configurations
which define the interconnections of said basic
components;

means for modifying the definitions stored in said first 45
and second knowledge bases; and

means for automatically calculating the effect of a
failed basic component on the operation of said
desired system by aggregating said component
definitions stored in said first knowledge base based 50
on the interconnection definitions stored in said
second knowledge base.

4. The reliability model generator of claim 3 wherein
said means for modifying definitions comprises an inter-
active graphics based user interface.

5. A programmed computer system for generating
reliability models comprising in combination:

first memory means for storing a plurality of compo-
nent model definitions;

second memory means for storing definitions of the 60
interrelationships of said components; and

means for mapping said component models into a
global reliability model, wherein a component may
comprise a plurality of subcomponents.

6. A method of automatically generating a reliability 65

teristics, failure modes and failure rates of said basic 35 8. A method for generating a model with a

for further storing
P l u r a h ' of one o r more high level components, said

grouping said high level components in to a set of
subcomponents arranged in a hierarchical arrange-
merit;

analyzing each set separately and identifying critical
failure modes for each set;

combining failure modes of said subcomponents ac-
cording to severity and common effects on said
high level component to produce a composite
model for each high level component: and

repeating steps a-c until a composite model for the
highest level component in the system is produced.

9. A computer system for automatically generating a
5 5 reliability model for use with a reliability analysis tool,

comprising in combination, a first memory means for
storing a first knowledge base encoding predefined
knowledge of

a plurality of system components wherein each of
said components has at least one input;

a second memory means for storing a second knowl-
edge base encoding predefined knowledge of a
predefined set of output characteristics and failure
modes for each of said system components based
on said inputs;

a third memory means for storing a third knowledge
base encoding predefined knowledge of the interre-
lationship of said system components;

method comprising the steps Of:

model of a system with a reliability model generator,
said reliability model generator comprising a computer
system having a memory, said memory storing a first

5,014,220
75 76

a fourth memory means for storing a fourth knowl-
edge base encoding predefined knowledge of an
output condition of a system being modeled; and

a knowledge base interpreter for interpreting said
first, second, third, and fourth knowledge bases 5
means for tracing through said components t o de-
termine which of said failure modes of said system
components contributed to said system output con-
dit ion.

ponents to produce a global system output charac-
teristic definition; and

calculating the effects of failures of lower level com-
ponents on said global system model.

12. The method of claim 11 wherein input and output
characteristics are used to represent the effects of com-
ponent failure modes emanating to other components in
the system.

13. The method of claim 11 wherein said step of de-
10. A method of generating a reliability model for use 10 termining the effects of failures of lower level compo-

with a reliability analysis tool, said reliability model nents includes the step of determining the effects of
generator comprising a computer system having a mem- corrupted inputs on component‘s outputs regardless of
ory said memory for storing a first knowledge base for inputted values.
storing definitions of A method of automatically gener- 14. The method of claim 11 wherein said step of de-
ating a reliability model for use with a reliability analy-, 15 fining a plurality of basic system components includes
sis tool, the step of defining the relationship between what is

input to the component and the information that is pro-
duced by the component based on said input and known
functions performed by said component.

components is mathematically defined by a series of
statements separated by a semicolon to indicate sequen-

clauses may be defined within a statement and further
wherein each clause represents a condition under which
component State changes’

The method Of ‘Iaim l5 wherein each ‘lause is
delineated by “ 1 ” and takes the form:

local reliability models for each basic component in a
system wherein each of said basic components
provides a predetermined function expressed in

nent inputs to outputs wherein said local reliability
defines the behavior Of a component inde-

Of a sequence Of Operations mapping 2o 15. The method of claim 11 wherein each of said

pendent of any system configuration, said method tial flow among statements wherein a plurality of comprising the steps of
defining a desired system configuration comprising 25

the interrelationship of said basic components to
define the structural characteristics of a system;

defining the failure modes and failure rates for each of
said basic components; and

automatically calculating the effects of basic compo- 30
nent failures on other components in the system to

where x, y and z comprise input or output variables. produce a global reliability model.
11. A method of generating a reliability mode, with a 17. The method of claim 16 wherein the basic system reliability model generator, said reliability model for use components are defined to a,low the effects of input with a reliability analysis tool, said reliability model 35 characteristics to be traced through the function to

generator comprising a computer system having a mem- define output characteristics wherein said output char- ory, said memory for storing a first knowledge base for acteristics become input characteristics for other com- storing definitions of
a plurality of basic system components in terms of POnents‘

function, and output characteristic definitions said 40 ’** The method Of ‘Iaim l7 wherein “Ies define
output characteristics of good, bad or nil for all possible method comprising the steps of:

of intermediate level components input characteristics good, bad or nil based On prede-
wherein =id intermediate level components fined component functions and failure modes.
prise a p~ural,ty of intermediate or basic system 19. The method of claim 17 wherein logical rules
components coupled in series or parallel in a prede- 45 define output characteristics of one, zero or data values
fined configuration; based on predefined logical functions and failure modes.

20. The method of claim 11 wherein generic functions
tivity; are defined to characterize nil-sensitive and non-nil-sen-

sitive operations.
21. The method of claim 11 wherein failure modes are

defined as a change in component’s outputs Produced
by a change in a component function representing de-
graded operation.
22. The method of claim 11, further including the step

defining a global system model with said intermediate 5 5 of automatically accounting for failure modes which d o
no affect system operation.

23. The method of claim 11, further including the step
of accounting for failure modes wherein said system
automatically compensates for said failure modes.

s= ~, x,

defining a

defining a system based on component interconnec-

calculating the output characteristic definition for
each of said intermediate level components by 50
aggregating the output characteristic definitions of
said basic system components which comprise said
intermediate level components based on said com-
ponent interconnectivity;

level components coupled in a predetermined con-
figuration by aggregating the output characteristic
definitions of said intermediate level components
and eliminating overlaps between said output char-
acteristic definitions of said intermediate level com- 60 * * * * *

65

UNITED STATES PATENT AND TRADEMARK OFFICE
- CERTIFICATE OF CORRECTION

PATENTNU. : 5 , 0 1 4 , 2 2 0

DATED May 7, 1 9 9 1

INVENTOR(S) : Catherine M. McCann; Gerald C. Cohen

corrected as shown below:
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

In column 75, clairri 11, line 33, please delete "node" and
substitute therefor -- model --.

Signed and Sealed this

Sixteenth Day of February, 1993

Attest:

sTEPnEN G. KUNIN

Attesting Officer Acting Commissioner of Parenrs and W e m a r k s

