1,176 research outputs found

    Absolute diffuse calibration of IRAC through mid-infrared and radio study of HII regions

    Get PDF
    We investigate the diffuse absolute calibration of the InfraRed Array Camera on the Spitzer Space Telescope at 8.0microns using a sample of 43 HII regions with a wide range of morphologies near GLON=312deg. For each region we carefully measure sky-subtracted,point-source- subtracted, areally-integrated IRAC 8.0-micron fluxes and compare these with Midcourse Space eXperiment (MSX) 8.3-micron images at two different spatial resolutions, and with radio continuum maps. We determine an accurate median ratio of IRAC 8.0-micron/MSX\8.3-micron fluxes, of 1.55+/-0.15. From robust spectral energy distributions of these regions we conclude that the present 8.0-micron diffuse calibration of the SST is 36% too high compared with the MSX validated calibration, perhaps due to scattered light inside the camera. This is an independent confirmation of the result derived for the diffuse calibration of IRAC by the Spitzer Science Center (SSC). From regression analyses we find that 843-MHz radio fluxes of HII regions and mid-infrared (MIR) fluxes are linearly related for MSX at 8.3-microns and Spitzer at 8.0 microns, confirming the earlier MSX result by Cohen & Green. The median ratio of MIR/843-MHz diffuse continuum fluxes is 600 times smaller in nonthermal than thermal regions, making it a sharp discriminant. The ratios are largely independent of morphology up to a size of ~24 arcsec. We provide homogeneous radio and MIR morphologies for all sources. MIR morphology is not uniquely related to radio structure. Compact regions may have MIR filaments and/or diffuse haloes, perhaps infrared counter- parts to weakly ionized radio haloes found around compact HII regions. We offer two IRAC colour-colour plots as quantitative diagnostics of diffuse HII regions.Comment: 29 pages, LaTeX (aastex), incl. 31 PostScript (ps,eps) figures and 5 tables. Accepted by MNRAS (main journal). Replaced an unused file and added this URL for people wishing to download a version with high-resolution images: http://www.astro.wisc.edu/sirtf/martin.hii.accepted.pd

    G313.3+00.3: A New Planetary Nebula discovered by the Australia Telescope Compact Array and the Spitzer Space Telescope

    Full text link
    We present a new planetary nebula, first identified in images from the Australia Telescope Compact Array, although not recognized at that time. Recent observations with the Spitzer Space Telescope during the GLIMPSE Legacy program have rediscovered the object. The high-resolution radio and infrared images enable the identification of the central star or its wind, the recognition of the radio emission as thermal, and the probable presence of polycylic aromatic hydrocarbons in and around the source. These lead to the conclusion that G313.3+00.3 is a planetary nebula. This object is of particular interest because it was discovered solely through radio and mid-infrared imaging, without any optical (or near-infrared) confirmation, and acts as a proof of concept for the discovery of many more highly extinguished planetary nebulae. G313.3+00.3 is well-resolved by both the instruments with which it was identified, and suffers extreme reddening due to its location in the Scutum-Crux spiral arm.Comment: 18 pages, LaTeX (aastex), incl. 8 PostScript (eps) figures and 1 table. Accepted by ApJ (Part 1

    Understanding the Relationships between Tourists’ Emotional Experiences, Perceived Overall Image, Satisfaction, and Intention to Recommend

    Get PDF
    The purpose of this study is to empirically test an integrative model linking tourists' emotional experiences, perceived overall image, satisfaction, and intention to recommend. The model was tested using data collected from domestic tourists visiting Sardinia, Italy. Results show that tourists' emotional experiences act as antecedents of perceived overall image and satisfaction evaluations. In addition, overall image has a positive influence on tourist satisfaction and intention to recommend. The study expands current theorizations by examining the merits of emotions in tourist behavior models. From a practical perspective, the study offers important implications for destination marketers

    Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology

    Get PDF
    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science

    Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project

    Full text link
    We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo- urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good isolation between these colors and those of many other types of astronomical object. The only substantive contamination of PNe in the color-color plane we illustrate is due to YSOs. However, this ambiguity is readily resolved by the unique optical characteristics of PNe and their environs. We also examine the relationships between optical and MIR morphologies from 3.6 to 8.0um and explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a valuable discriminant between thermal and nonthermal emission. MASH emphasizes late evolutionary stages of PNe compared with previous catalogs, enabling study of the changes in MIR and radio flux that attend the aging process. Spatially integrated MIR energy distributions were constructed for all MASH PNe observed by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC, and radio continuum (from the Molonglo Observatory Synthesis Telescope and the Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux densities provides a measure of the absolute diffuse calibration of IRAC at 8.0 um. We independently confirm the aperture correction factor to be applied to IRAC at 8.0um to align it with the diffuse calibration of MSX. The result agrees with the recommendations of the Spitzer Science Center and with results from a parallel study of HII regions. These PNe probe the diffuse calibration of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3 tables. Accepted by Astrophysical Journa

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Factors predicting treatment of World Trade Center-related lung injury : a longitudinal cohort study

    Get PDF
    The factors that predict treatment of lung injury in occupational cohorts are poorly defined. We aimed to identify patient characteristics associated with initiation of treatment with inhaled corticosteroid/long-acting beta-agonist (ICS/LABA) >2 years among World Trade Center (WTC)-exposed firefighters. The study population included 8530 WTC-exposed firefighters. Multivariable logistic regression assessed the association of patient characteristics with ICS/LABA treatment for >2 years over two-year intervals from 11 September 2001-10 September 2017. Cox proportional hazards models measured the association of high probability of ICS/LABA initiation with actual ICS/LABA initiation in subsequent intervals. Between 11 September 2001-1 July 2018, 1629/8530 (19.1%) firefighters initiated ICS/LABA treatment for >2 years. Forced Expiratory Volume in 1 s (FEV1), wheeze, and dyspnea were consistently and independently associated with ICS/LABA treatment. High-intensity WTC exposure was associated with ICS/LABA between 11 September 2001-10 September 2003. The 10th percentile of risk for ICS/LABA between 11 September 2005-10 Septmeber 2007 was associated with a 3.32-fold increased hazard of actual ICS/LABA initiation in the subsequent 4 years. In firefighters with WTC exposure, FEV1, wheeze, and dyspnea were independently associated with prolonged ICS/LABA treatment. A high risk for treatment was identifiable from routine monitoring exam results years before treatment initiation
    • …
    corecore