31 research outputs found

    Targeting the Canonical Nuclear Factor-ÎșB Pathway with a High-Potency IKK2 Inhibitor Improves Outcomes in a Mouse Model of Idiopathic Pneumonia Syndrome

    Get PDF
    Idiopathic pneumonia syndrome (IPS) is a noninfectious inflammatory disorder of the lungs that occurs most often after fully myeloablative allogeneic hematopoietic stem cell transplantation (HSCT). IPS can be severe and is associated with high 1-year mortality rates despite existing therapies. The canonical nuclear factor-(NF) ÎșB signaling pathway has previously been linked to several inflammatory disorders of the lung, including asthma and lung allograft rejection. It has never been specifically targeted as a novel IPS treatment approach, however. Here, we report that the IÎșB kinase 2 (IKK2) antagonist BAY 65-5811 or “compound A,” a highly potent and specific inhibitor of the NF-ÎșB pathway, was able to improve median survival times and recipient oxygenation in a well-described mouse model of IPS. Compound A impaired the production of the proinflammatory chemokines CCL2 and CCL5 within the host lung after transplantation. This resulted in significantly lower numbers of donor lung infiltrating CD4+ and CD8+ T cells and reduced pulmonary inflammatory cytokine production after allograft. Compound A's beneficial effects appeared to be specific for limiting pulmonary injury, as the drug was unable to improve outcomes in a B6 into B6D2 haplotype-matched murine HSCT model in which recipient mice succumb to lethal acute graft-versus-host disease of the gastrointestinal tract. Collectively, our data suggest that the targeting of the canonical NF-ÎșB pathway with a small molecule IKK2 antagonist may represent an effective and novel therapy for the specific management of acute lung injury that can occur after allogeneic HSCT

    Towards an understanding of unique and shared pathways in the psychopathophysiology of AD/HD

    Get PDF
    Most attention deficit hyperactivity disorder (ADHD) research has compared cases with unaffected controls. This has led to many associations, but uncertainties about their specificity to ADHD in contrast with other disorders. We present a selective review of research, comparing ADHD with other disorders in neuropsychological, neurobiological and genetic correlates. So far, a specific pathophysiologicalpathway has not been identified. ADHD is probably not specifically associated with executive function deficits. It is possible, but not yet established, that ADHD symptoms may be more specifically associated with motivational abnormalities, motor organization and time perception. Recent findings indicating common genetic liabilities of ADHD and other conditions raise questions about diagnostic boundaries. In future research, the delineation of the pathophysiological mechanisms of ADHD needs to match cognitive, imaging and genetic techniques to the challenge of defining more homogenous clinical groups; multi-site collaborative projects are needed. © Blackwell Publishing Ltd

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Publication history: Accepted - 19 May 2021; Published - 5 August 2021.Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.Eesti Teadusagentuur, Grant/Award Number: PRG609 and PUT1409; Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Science Foundation Ireland, Grant/Award Number: 15/ERCD/2803; Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: IJCI-2017- 32039; European Regional Development Fun

    Epstein-Barr Virus Serology as a Potential Screening Marker for Nasopharyngeal Carcinoma among High-Risk Individuals from Multiplex Families in Taiwan

    No full text
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is an EBV associated cancer that is highly treatable when diagnosed early, with 5-year disease-free survival of ~90%. However, NPC is typically diagnosed at advanced stages, where disease-free survival is <50%. There is therefore a need for clinical tools to assist in early NPC detection, particularly in high-risk individuals. METHODS: We evaluated the ability of anti-EBV IgA antibodies to detect incident NPC among high-risk Taiwanese individuals. NPC cases (N=21) and age and sex-matched controls (N=84) were selected. Serum collected prior to NPC diagnosis was tested for ELISA-based IgA markers against the following EBV peptides: EBNA1, VCAp18, EAp138, Ead_p47, and VCAp18 + EBNA1 peptide mixture. The sensitivity, specificity, and screening program parameters were calculated. RESULTS: EBNA1 IgA had the best performance characteristics. At an optimized threshold value, EBNA1 IgA measured at baseline identified 80% of the high-risk individuals who developed NPC during follow-up (80% sensitivity). However, approximately 40% of high-risk individuals who did not develop NPC also tested positive (false positives). Application of EBNA1 IgA as a biomarker to detect incident NPC in a previously unscreened, high-risk population revealed that 164 individuals needed to be screened to detect 1 NPC and that 69 individuals tested positive per case detected. CONCLUSIONS: EBNA1 IgA proved to be a sensitive biomarker for identifying incident NPC, but future work is warranted to develop more specific screening tools to decrease the number of false positives. IMPACT: Results from this study could inform decisions regarding screening biomarkers and referral thresholds for future NPC early-detection program evaluations
    corecore