55 research outputs found

    First molecular identification of canine Parvovirus type 2 (CPV2) in Chile reveals high occurrence of CPV2c antigenic variant

    Get PDF
    Canine parvovirus type 2 (CPV2) is one of the most important intestinal pathogens in dogs and puppies. CPV2 has been evolved into three genetic and antigenic variants (2a, 2b, and 2c), which are distributed worldwide. We reported the first study of genetic diversity of CPV2 in Chile. Sixty-five samples were collected from puppies presenting with severe gastroenteritis and different vaccination statuses. PCR, restriction fragment length polymorphism (RFLP), and partial sequencing of the coding region of the structural viral protein VP2 was performed. Thirty of a total of 65 samples tested positive by PCR out of which 19 were further classified as CPV2c and one as CPV2a using RFLP and Sanger sequencing. The phylogeny was in concordance with the RFLP analysis. This is the first report of the genetic characterization of CPV2 in Chile and reveals a high occurrence of CPV2c

    Computational modelling in disorders of consciousness: closing the gap towards personalised models for restoring consciousness

    Get PDF
    Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges

    3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors.

    Get PDF
    Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells\u27 transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression

    Moving with Ease: Feldenkrais Method Classes for People with Osteoarthritis

    Get PDF
    UNLABELLED: Objective. To investigate the effects of Feldenkrais Method classes on gait, balance, function, and pain in people with osteoarthritis. Design. Prospective study with pre-/postmeasures. Setting. Community. Participants. Convenience sample of 15 community-dwelling adults with osteoarthritis (mean age 67 years) attending Feldenkrais Method classes. Intervention. Series of Feldenkrais Method classes, two classes/week for 30 weeks. MAIN OUTCOME MEASURES: Western Ontario and McMaster Universities osteoarthritis scale, Human Activity Profile, stair climbing test, 6-minute walk test, timed up-and-go test, Four Square Step Test (4SST), gait analysis, and assessment of quality of life (AQoL). Results. Participants improved on the 4SST and on some gait parameters. They also reported a greater ease of movement. Conclusions. A 30-week series of Feldenkrais classes held twice per week was feasible in the community setting. The lessons led to improvements in performance of the four square step test and changes in gait
    corecore