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a b s t r a c t 

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain 
injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a 
more thorough understanding of how human consciousness arises from coordinated neural activity. The increas- 
ing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically- 
motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mecha- 
nisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means 
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. Introduction 

.1. Disorders of consciousness 

Advances in intensive care medicine have led to an increasing num-
er of patients surviving severe brain injuries. Some of these patients
egain consciousness, but others will remain in a Disorder of Conscious-
ess (DOC) state. Post-comatose DOC patients are characterized by hav-
ng their eyes open (awake) while remaining seemingly unable to re-
pond or communicate ( Claassen et al., 2021 ; Giacino, 2004 ). Chronic
mpairments of consciousness constitute a challenging situation, which
equires better understanding of the underlying physiopathology to de-
elop novel diagnostic, prognostic, and therapeutic tools to individually
nd optimally take care of each patient ( Edlow et al., 2020 ). This clinical
oal is well aligned (though of course not identical) with the scientific
oal of a robust theory of consciousness ( Luppi et al., 2021 ). Improv-
ng our ability to detect consciousness and promote its recovery will
nhance our ability to study it; and in turn, obtaining a better under-
tanding of consciousness and its neural bases is expected to increase
ur ability to identify its presence or the causes of its absence, and how
o promote its recovery in the clinic. 

Patients with disorders of consciousness occupy a behavioural spec-
rum currently divided into different conditions: coma, vegetative state
r unresponsive wakefulness syndrome (VS/UWS) and minimally con-
cious state (MCS). Patients in a coma are characterised by lack of
rousal and responsiveness. On the other hand, both VS/UWS and MCS
atients exhibit similarly preserved arousal, but while VS/UWS patients
emain largely unresponsive (with comatose patients also having their
yes closed), MCS patients show fluctuations in their behaviour, ex-
ibiting temporal windows where volitional behaviour can be inferred
 Bodien et al., 2022 ; Giacino, 2004 , 2002 ). In the acute stage, progno-
is is variable and highly dependant on the severity of the current state.
rognosis for chronic DOC patients is typically poor, with many patients
emaining chronically unresponsive, and often dying without regaining
onsciousness ( Estraneo et al., 2020 ). Treatment options remain lim-
ted, and rates of success are modest at best, although vigorous research
s taking place to provide alternatives ( Schnakers, 2017 ). 

This challenging situation is perhaps not surprising, when one con-
iders that even clinically distinguishing between VS/UWS and MCS pa-
ients is far from trivial: on the contrary, this diagnosis can be challeng-
ng for physicians without specialist training, and misdiagnosis rates
each up to 43% ( Schnakers et al., 2009 ). Misdiagnosis can have impor-
ant consequences, such as inadequate pain management, prognosis un-
erestimation and even improper end-of-life decisions. Moreover, even
hen correctly performed, behaviour-based diagnosis is not fully accu-

ate and might erroneously label some patients who in fact retain covert
wareness. Functional brain imaging (fMRI) studies on VS/UWS pa-
ients provide evidence for covert intentional brain activity ( Monti et al.,
010 ; Owen et al., 2006 ) in 10–15% of unresponsive patients and, in a
ew cases, similar methods have been used to enable simple functional
ommunication with these patients ( Claassen et al., 2019 ; Monti et al.,
010 ). Therefore, there is growing consensus for a need to go beyond
ehavioural observation alone, which has been matched by increasing
vailability of neuroimaging techniques which provide insights about
atients’ brains: structural and diffusion MRI to identify the impact of le-
ions on anatomical structures and their connections, but also functional
2 
ent avenues to restore consciousness. As a dedicated Working Group of clini-
ternational Curing Coma Campaign, here we provide our framework and vision
al and generative computational modelling approaches that are being employed
ntify the gaps that exist between the current state-of-the-art in statistical and
ling in human neuroscience, and the aspirational goal of a mature field of mod-
which might drive improved treatments and outcomes in the clinic. Finally, we
r how the field as a whole can work together to address these challenges. 

RI, electroencephalography (EEG) ( Naci et al., 2017 ) and functional
ear-infrared spectroscopy (fNIRS) ( Abdalmalak et al., 2021 ) to observe
rain activity, and positron emission tomography (PET) measures of
etabolism ( Bodart et al., 2017 ; Golkowski et al., 2017 ; Hermann et al.,
021 ; Sala et al., 2021 ) and receptor density ( Qin et al., 2015 ) to name
ust a few. 

The question therefore arises: can we capitalise on this wealth of data
nd decades of research to inform diagnosis in the clinic, and predict
rognosis and devise more suitable treatments? 

.2. Why modelling? 

Neuroscience is witnessing vigorous modelling efforts, from the
cale of single neurons to whole-brain models ( Amunts et al., 2022 ;
’Angelo and Jirsa, 2022 ; Einevoll et al., 2019 ; Roland et al., 2019 ).
ne way to understand what we mean by “model ” is “a quantitative

pecification of a theory about how some aspect of the world works ”.
hat can be as simple as a linear model describing the correlation be-
ween two variables; or it can take a more complicated form, such as
oupled differential equations describing the evolution of a system. It is
lear that obtaining quantitative models of DOC would be valuable not
nly in terms of advancing our scientific understanding of consciousness
nd its neural bases, but also in the clinic: for making more accurate di-
gnoses based on quantitative evidence, and for having a more robust
nderstanding of the pathology’s trajectory in order to try and steer it
owards more favourable outcomes. 

The first, crucial step towards modelling is therefore the identifica-
ion and quantification of relevant properties. In the recent decades,
ith the advent of modern functional neuroimaging techniques, neu-

oscience has increasingly been able to identify links between loss of
onsciousness - whether pathological or pharmacological - and altered
roperties of brain activity and its dynamics ( Afrasiabi et al., 2021 ;
arttfeld et al., 2015 ; Bonhomme et al., 2019 ; Campbell et al., 2020 ;
emertzi et al., 2019 ; Gutierrez-Barragan et al., 2021 ; Huang et al.,
020 ; Hutchison et al., 2014 ; Luppi et al., 2019 ; Panda et al., 2022 ;
edinbaugh et al., 2020 ; Song et al., 2018 ). Combined with increasingly
etailed information about the healthy brain’s macroscale structural and
unctional, microstructural, and molecular organization ( Markello et al.,
022 ), this information can be leveraged by statistical models, such as
achine learning (ML) algorithms, to characterise and categorise pa-

ient groups and sub-groups, but also to identify the features that best
elate to DOC pathophysiology. 

The ultimate end-goal of any DOC intervention is arguably to restore
onsciousness by re-establishing appropriate brain activity patterns (as-
uming a direct causal link from brain activity to consciousness). De-
criptive statistical models that summarise the data along specific di-
ensions (whether in the form of Generalised Linear Models, or via
achine learning methods), can reveal features of brain activity that

re altered in DOCs. However, they are limited in their ability to pre-
ict how external manipulations might interact with neural circuits. For
his purpose, it is necessary to develop generative models that allow in

ilico (i.e., through computational modelling rather than in vivo ) explo-
ation of hypothetical therapeutics aiming to rebalance brain activity
n DOC patients. Generative models serve to describe how a system be-
aves under certain conditions or in response to perturbation. A major
romise of generative models of brain activity is that they can be sys-
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Fig. 1. Overview of “Phase 0 clinical trial ” approach to modelling DOC. Multimodal neuroimaging data from each individual patient are combined into a 
patient-specific “fingerprint ”, and subsequently used (possibly together with normative data from the population) to inform a personalised brain model for each 
patient. For a given patient, the effects of different treatments can then be simulated in silico with their individualised model, to obtain insights about promising 
treatment avenues. 
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ematically and reversibly perturbed, making it possible to probe in sil-
co interventions that are still beyond the capabilities of experimental
esearch — whether in humans or animals ( Cabral et al., 2017 a; Cofré
t al., 2020 ; Kringelbach and Deco, 2020 ; Shine et al., 2021 ). For these
easons, generative computational modelling of brain activity is gaining
raction as a tool of choice for investigating the causal mechanisms that
rive brain activity in both healthy and pathological conditions, com-
lementing experimental research ( Cabral et al., 2017 a; Cofré et al.,
020 ; Kringelbach and Deco, 2020 ; Shine et al., 2021 ; Ramezanian-
anahi et al., 2022 ). However, current generative models of brain ac-
ivity remain rather abstract, and their predictive power and fidelity to
onsciousness remain to be validated with experiments in vivo , before
hey can be translated into clinical applications ( Kurtin et al., 2023 ).
nce sufficient knowledge is reached regarding the key features of brain
ctivity that reflect consciousness and how these can be modulated (first
n silico then in vivo ), novel avenues in addressing DOC can emerge. 

Ultimately, the aspirational goal for a mature field of DOC modelling
s one of personalised medicine, where models of the healthy brain can
e obtained from comprehensive subject-specific multimodal data at
he individual level, informed by aggregate data about relevant features
rom the broader population, and then perturbed to match each patient’s
nique patterns of structural organization and neural signatures. There-
fter, the disorder-mimicking model can be used as an in silico test-bed
i.e., a “digital twin ” of the patient ( Erol et al., 2020 )) to predict the
utcome of alternative interventions and define the optimal therapeu-
ic strategy for each patient aimed at restoring consciousness, opera-
ionalised as displacing the modelled activity in the general direction of
estored consciousness and cognitive function ( Fig. 1 ). The prospect of
ersonalised computational models enabling this kind of “Phase 0 clin-
cal trials ” is especially appealing for DOC, because patients can vary
idely in terms of aetiology, lesion site and extent, and symptoms - in

urn calling for different treatment avenues with no one-size-fits-all ap-
roaches. 

Here, we survey how different modelling approaches are being em-
loyed to address disorders of consciousness; we outline the gaps that
xist between the current state-of-the-art, and the aspirational goal of
 mature field of DOC modelling capable of finding application in the
linic; and we propose how some of these challenges could be addressed,
o bring the field closer to this ambition. 

. Modelling approaches: lay of the land 

To clarify how we hope for the field of DOC modelling to develop, it
s of course necessary to outline not only what we wish to achieve, but
lso how close we currently are to achieving it. In turn, this requires an
utline of current modelling approaches. In a rapidly developing field
3 
t the intersection of disciplines that are themselves rapidly evolving,
uch a taxonomy is a Sisyphean task, already outdated the moment it
s written. However, our aim with presenting this taxonomy is not one
f exhaustive enumeration; rather, below we provide a general map,
mitting the details of the territory to more clearly convey a sense of
he general landscape. 

With this caveat out of the way, a first distinction to be made is be-
ween statistical models and biophysical computational models ( Fig. 2 ).
tatistical models can be subdivided based on whether they seek to char-
cterise observed data in terms of summary statistics (descriptive mod-
ls), or they simulate the data-generating processes, in order to create
ew instances (generative models). Descriptive models find widespread
se for hypothesis testing in the form of Generalised Linear Models, to
uantify correlations or group-level differences in terms of some dimen-
ion(s) of interest: “Is there a statistically significant difference between
atients and controls in terms of measure X? ”. However, descriptive sta-
istical models can also be used in a hypothesis-free approach through
achine learning techniques, to identify data-driven clusters or features

hat best discriminate between clinically relevant categories: “Based on
his set of neuroimaging/clinical features, can we find previously unde-
ected sub-groups of patients? Along what dimension are patients most
iscriminable from healthy controls? ”. Generative statistical models ex-
licitly learn how the data are distributed, enabling such models to gen-
rate new instances that are consistent with relevant statistical proper-
ies of the observed data. Of note, here we contrast generative with “de-
criptive ” models, rather than with “discriminative ” models; we use this
roader term because we deal with a correspondingly broader class of
tatistical models than just classifiers intended to discriminate between
ategories. 

In contrast, biophysical(ly-inspired) models in computational neu-
oscience employ equations derived from the underlying biophysics of
eural activity (the physical, chemical and/or biological processes gov-
rning the dynamics of the system, at some suitable level of simplifica-
ion and abstraction) to simulate the time evolution of the system, typi-
ally in the form of a system of differential equations ( Breakspear, 2017 ;
hine et al., 2021 ; Ramezanian-Panahi et al., 2022 ). Note that such mod-
ls also allow the generation of new data instances: not by learning the
nderlying probability distributions, but rather via direct simulation of
he process that generated the data. By modelling the data-generating
rocess rather than only the resulting data, biophysical computational
odels provide an avenue to test and evaluate possible causal interven-

ions, addressing counterfactual questions about what would happen
f some aspects of the process were disrupted or altered (e.g., “What
appens if this connection is lesioned? ”; “What happens if inhibition is
ncreased? ”). Generative models of brain activity have been shown to
pproximate the nonlinear response to different types of perturbations,
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Fig. 2. Overview of relationships between distinct modelling approaches . Biophysical computational models and Generative Statistical Models can be grouped 
together because they can be used to generate new data. 
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uch as electromagnetic stimulation, structural lesions, or psychoactive
ompounds ( Burt et al., 2021 ; Deco et al., 2018a ; Luppi et al., 2022c ).
ith the caveat that experimental manipulation could be considered as

he only true arbiter of causality, biophysical computational models are
erhaps the closest in theory. 

Below, we describe each of these model families in more detail. 

.1. Statistical models 

.1.1. Descriptive statistical models 

Descriptive statistical models comprise a large family, ranging from
imple General Linear Models, to ML approaches (e.g. deep neural net-
orks) that can identify discriminative features in the data. General Lin-
ar Models are perhaps the simplest form of descriptive statistical mod-
lling, where a statistical relationship is hypothesised and then tested
etween two (or more) features of interest - for instance, some aspect
f brain activity or anatomy versus diagnosis. This approach is widely
sed to identify predictors/correlates of disease severity or recovery,
r to assess differences between patients and controls, or between sub-
roups of patients. These models are mostly ways of testing specific
ypotheses about the data ( Demertzi et al., 2015 ; Luppi et al., 2021a ;
utkenhoff et al., 2020 ). 

More recently, ML efforts are focusing on developing algorithms
hat learn statistical regularities in the input training data (defined by
 set of features) in a more hypothesis-free manner, in order to make
redictions on unseen data (e.g., diagnostic or prognostic predictions)
 Bareham et al., 2018 ; Campbell et al., 2020 ; Chennu et al., 2017 ;
ngemann et al., 2018 ; Hermann et al., 2021 ; Riganello et al., 2018 ;
tefan et al., 2018 ; Wielek et al., 2018 ; Zheng et al., 2017 ). Such al-
orithms can be as simple as a logistic regression and as complex as
eep learning techniques. It would be beyond the scope of this arti-
le to describe all possible types of ML approaches. Briefly, the most
elevant distinction for current applications is arguably between super-
ised (including semi- and self-supervised flavours) and unsupervised
L models. Supervised models are given ground-truth information, e.g.,

linical labels about the diagnosis or outcome or treatment response of
ach subject, and their task is to find features in the neuroimaging data
hat best tell the data-points apart: that is, they perform classification or
egression tasks. Unsupervised models instead typically seek to cluster
ata-points based on their features, to reveal similarities and differences
y learning the statistical structure of the input data in the absence of
redefined labels ( Khosla et al., 2019 ). 

Descriptive statistical models can also be characterised by the vari-
us input features considered. First, in terms of estimating the predictive
ower of single features or the optimal combination of multiple fea-
ures (i.e., univariate versus multivariate analysis). Second, by the type
4 
f features used (e.g., unimodal features - single neuroimaging modality
 or multimodal features - multiple modalities). Third, descriptive sta-
istical models can vary in terms of the “feature engineering ” strategy
dopted: namely, investigators may pre-select features based on theoret-
cal predictions (possibly after complex data-processing steps), or they
ay choose a more data-driven approach to feature selection. Since
escriptive modelling approaches produce classification or regression,
hey can be used to determine the relevance of a given feature, or iden-
ify the most important feature(s) out of many, or classify data-points
nto controls or patients, or into patient sub-groups. 

Note that another kind of “statistical model ” can be identified:
amely, “null ” models that are used to test whether a given observa-
ion is statistically unexpected, not against the healthy population or a
ifferent patient sub-group (as is typically done when using descriptive
tatistical models to study DOC), but rather against some hypothesised
rocess. We will not address this kind of model here (nor the related
lass of generative null models), but we refer the interested reader to an
xcellent recent review by Váš a and Mi š i ć (2022) . 

.1.2. Generative statistical models 

Generative statistical models aim to reproduce the system under
tudy or some of its (statistical) features, helping to understand what
akes the recorded signal behave the way it does. These models are

ased on function approximation, utilising random processes that have
een shown to – or are thought to – describe biological and brain data
easonably, to obtain “new ” data that are consistent with statistical
roperties of the empirical data. Examples of these models are those
ased on Markov processes, which describe the evolution of a dynami-
al system by the probabilities of transitioning between separable "sub-
tates" of activity. From this perspective, each recording of brain activ-
ty can be interpreted as a series of transitions between such sub-states.
ifferent approaches have been proposed to decompose brain activity
etected with fMRI into a subset of states, including clustering algo-
ithms, Hidden Markov Models (HMMs) or more advanced manifold
earning algorithms ( Busch et al., 2023 ). With HMMs, each sub-state
s associated with a set of parameters of the observed data, with the
ost common choice being a multivariate autoregressive (MAR) model

 Ou et al., 2015 ; Vidaurre et al., 2017 , 2016 ). Alternatively, the activ-
ty or connectivity patterns observed over time can be clustered into a
educed set of clusters (or sub-states) and the dynamics can be similarly
nalysed as a Markov process by the transition probabilities between
ub-states ( Allen et al., 2014 ; Preti et al., 2017 ; Vohryzek et al., 2020 ).
verall, although the optimal approach to define brain sub-states re-
ains under debate, the approach to characterise brain dynamics from

MRI data as trajectories in a state space (i.e. as a Markov process) has re-
ealed high sensitivity to differentiate across a wide range of conditions,
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amely between sleep stages ( Stevner et al., 2019 ), between controls
nd patients with psychiatric symptoms ( Zarghami and Friston, 2020 ;
lonso Martínez et al., 2020 ; Farinha et al., 2022 ), between cognitive

raits ( Cabral et al., 2017b ; Vidaurre et al., 2017 ; Uddin et al., 2021 ),
nd in psychedelic-induced altered states of consciousness ( Lord et al.,
019 ; Olsen et al., 2022 ). 

Note that these models are agnostic to the underlying (bio)physics;
n other words, they do not seek to simulate the process that leads
o the data, but only the statistical features of the data. Therefore, as
ith other kinds of generative statistical models, the mechanisms within

hese models may be biologically implausible, even though their outputs
atch the statistical features of measured data - an important distinction
ith biophysical computational models. 

.1.3. Statistical models of DOC: current approaches 

The diagnosis of consciousness in patients with DOC poses impor-
ant challenges, and relying solely on clinical assessments of behaviour
as limitations. Recent findings indicate that complementing clinical
ehavioural assessments with statistical neuroimaging analysis can im-
rove the diagnosis accuracy and the evaluation of intervention out-
omes. Various statistical approaches have been proposed to identify
nd classify patients with DOC using data obtained from different neu-
oimaging techniques, which could complement systematic behavioural
ssessment and help reduce the misdiagnosis rate reported in these pa-
ients. These methods encompass extracting markers from electrophys-
ological and neuroimaging data, and using them for multivariate sta-
istical models, aiming to obtain insights on diagnostic and prognostic
easures. 

Sitt and colleagues used feature engineering to quantify high density
EG (hdEEG) putative neuronal signatures of consciousness (such as in-
erareal connectivity, complexity, spectral activity, as predicted by cur-
ent theories of consciousness) and quantify their performance to predict
he state of consciousness of DOC patients ( Sitt et al., 2014 ; King et al.,
013 ). They also used ML (support vector machine classifiers) to opti-
ally combine those features and demonstrate that they carry indepen-
ent predictive information. Specific patterns of resting brain connectiv-
ty measured through hdEEG have been found to strongly correlate with
he re-emergence of consciousness after brain injury ( Bareham et al.,
018 ). Machine learning analysis of sleep patterns using EEG has also
een shown to accurately predict the level of consciousness in patients
ith DOC ( Wielek et al., 2018 ). Graph theory has been applied to spec-

ral connectivity estimated from EEG, and key quantitative metrics of
hese networks have been found to correlate with the continuum of be-
avioural recovery in patients with DOC ( Chennu et al., 2017 ). 

A deeper evaluation of EEG-based diagnosis of DOC patients per-
ormed by Engemann et al. (2018) who depicted an automated pro-
edure that was suitable for cross-site and cross-protocol diagnosis of
OC. Based on ensembles of decision trees, they concluded that fluc-

uations in the power of theta and alpha EEG frequency bands were
he most consistent and relevant markers. In line with these results,
tefan et al. (2018) showed that the power in alpha frequency band was
he most effective at distinguishing patients in minimally conscious state
MCS) from those in unresponsive wakefulness syndrome (UWS/VS),
hile the average clustering coefficient obtained from beta-band coher-

nce networks was the best predictor of outcome. 
Resting-state fMRI (rs-fMRI) has also been used to identify differ-

nces in local, regional, and network activity between DOC patients
nd healthy controls. Machine learning models trained to distinguish
etween conscious wakefulness and anaesthetic-induced unconscious-
ess were investigated for their ability to identify pathologically induced
nconsciousness ( Campbell et al., 2020 ). The models achieved reliable
erformance within and across datasets and demonstrated potential for
iscriminating between degrees of pathological unconsciousness in clin-
cal patients. Analysing rs-fMRI from the perspective of a trajectory in
 state space, where the states were defined by clustering instantaneous
atterns of phase coherence between brain areas detected over time,
5 
evealed that UWS/VS patients show primarily a brain pattern of low
nterareal phase coherence, with reduced transition probabilities (mean-
ng that this state is more stable) when compared with healthy individ-
als and minimally conscious patients ( Demertzi et al., 2019 ). In turn,
he latter exhibit higher predominance of patterns in which brain re-
ions activate in anti-phase, and switch more often between states. 

At the structural level, Annen et al. (2018) used T1-weighted MRI im-
ges to extract regional brain volumes of white and grey matter, which
ere later used in a ML model to diagnose DOC patients. Machine learn-

ng based on diffusion MRI tractography was used to identify regions
long the tracks that were most informative in distinguishing amongst
OC patients in distinct groups: UWS/VS, and two sub-groups of min-

mally conscious state, termed MCS + and MCS- ( Zheng et al., 2017 ).
hese results indicated that thalamo-cortical connections play a role in
atients’ behavioural profile and level of consciousness, and diffusion
ensor imaging combined with ML algorithms could potentially facili-
ate diagnostic distinctions in DOC. 

Moreover, multimodal approaches have been proposed to study
ross-modal relations with respect to diagnosis and prognosis of DOC. In
ermann et al. (2021) , the authors combined FDG-PET and EEG-based
lassification used based on a support vector machine to optimise diag-
ostic performance and predict 6-month command-following recovery
n DOC patients ( Hermann et al., 2021 ). A more recent work provided a
ystematic comparison of EEG-extracted features, visual interpretation
s well as functional connectivity from rs-fMRI in models to diagnose
OC in the intensive care unit ( Amiri et al., 2023 ). 

Finally, statistical models have detected relevant markers for DOC
n other physiological signals extending beyond the brain, such as in
eart rate. Indeed, it has been shown that electrocardiography can also
e used to diagnose DOC ( Raimondo et al., 2017 ), providing partially
ndependent information from the EEG signals. In a later publication,
iganello et al. (2018) showed that heart rate variability (HRV) en-

ropy analysis, specifically the “complexity index ”, can serve as a feature
or differentiating between VS/UWS and MCS patients. Similarly, Can-
ia Rivera and colleagues demonstrated that features extracted from
he heart-evoked potential can be optimally combined to predict the
tate of consciousness of patients in resting state and during a task
 Candia Rivera et al., 2021 , 2023 ). These studies suggest that heart rate
onitoring can provide an easy, inexpensive, and non-invasive diagnos-

ic tool for disorders of consciousness, with the aid of statistical mod-
lling techniques. 

However, it is also important to clarify that these models have cer-
ain limitations. First, several of the previous works do not fully vali-
ate the models on new datasets and lack performance estimates beyond
he initial cross-validated performances, which are often overestimated
 Varoquaux, 2018 ). Second, their utility as part of clinical decision sys-
ems remains unknown. While the models provide novel insights into
he DOC population, it is not yet clear what is the cost versus benefit
f using such models. Further holistic analysis considering the human,
echnical and economic cost are required. Finally, and most importantly,
tatistical models of DOC are well suited to identify relevant features out
f many possible candidates, but they do not explicitly model the pro-
ess by which such features come to be relevant, i.e., they do not, on
heir own, provide insight on how to act on them, so they provide little
nsight about clinical interventions. 

.2. Biophysical and biologically-inspired computational models 

.2.1. A vast space of biophysical models 

Complementing purely statistical modelling techniques, in silico sim-
lations of brain activity represent a powerful set of tools to study
acroscale mechanistic questions in neuroscience ( Cabral et al., 2017 a;
ofré et al., 2020 ; Deco and Kringelbach, 2014 ; Kringelbach and
eco, 2020 ; Ramezanian-Panahi et al., 2022 ). Biophysical and
iophysically-inspired computational models incorporate some aspect
f biology (e.g., anatomical connectivity, excitatory and inhibitory pop-
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lations etc..), and exist on a continuum, with varying biological plausi-
ility and varying complexity and detail, which depends in part on the
cale of the system being modelled (synapse, cell, region, whole brain
etwork). As the terminology varies, we include in this admittedly broad
ategory models that produce simulations of brain activity over time;
uch models also typically incorporate empirical data in the simulation
rocess, such as the empirical connectivity between brain regions. 

To date, there is no single model that can reproduce all the myriad
spects of human brain activity that span multiple spatial and temporal
cales. The pursuit of such a universal model poses overwhelming con-
eptual and computational challenges. For this reason, researchers typ-
cally employ different computational models that are shaped accord-
ng to their specific research question. Such models can vary widely in
erms of their complexity, neurobiological realism of inputs and outputs,
nd even the target of the modelling: some summarise brain activity via
 single global parameter (for example, fitting the model to the point
here the mean firing rate becomes unstable, or a marker of critical-

ty), whereas others seek to reproduce aspects of regional activity, or
nter-regional connectivity (e.g., the pattern of functional correlations
etween regions). Likewise, models can vary in the spatial scale of in-
erest - from small neuronal populations to the entire brain - and the
emporal scale, from millisecond-resolution electrophysiology to the in-
raslow fluctuations of the BOLD signal ( Cabral et al., 2017 a; Cofré et al.,
020 ; Kringelbach and Deco, 2020 ). There is also a great deal of hetero-
eneity regarding the level of biophysical plausibility of computational
odels - abstract (sometimes called “phenomenological ”; Ramezanian-
anahi et al., 2022 ; Pathak et al., 2022 ; Kurtin et al., 2023 ) models
rade-off biological specificity for a clarity of insight, however at the
otential cost of solutions that betray the true processes occurring in
he brain. 

In turn, both hypothesis-driven and data-driven approaches to mod-
lling can be employed: some researchers seek to find model parameters
hat best fit the observed data, whereas others seek to assess the effects
f perturbing the models in specific ways. An example of the former
ind is Dynamic Causal Modelling: this approach employs biophysical
quations to model fMRI or EEG activity, but its principal use is not
or generating new data, but rather for selecting between competing ac-
ounts of a given phenomenon (i.e., “model selection ”) ( Casey et al.,
022 ; Friston et al., 2019 , 2003 ; Preller et al., 2019 ; Stoliker et al.,
022 ). An example of the latter kind is network control theory ( Gu et al.,
015 ), which models activity through an autoregressive process based
n the simplifying assumption of macroscopically linear dynamics. As a
esult of this simplification, network control theory can characterise the
ropensity of brain networks to steer brain dynamics in a desired direc-
ion, or support the spreading of perturbations (e.g., transcranial mag-
etic stimulation pulses or deep brain stimulation), and identify stimu-
ation regimes capable of producing a desired activity state ( Betzel et al.,
016 ; Cornblath et al., 2018 ; Gu et al., 2015 ; Kim et al., 2018 ; Lynn and
assett, 2019 ; Medaglia et al., 2017 ; Singleton et al., 2022 ; Tang et al.,
020 , 2017 ; Zarkali et al., 2020 ) (but see also Pasqualetti et al. (2019) ,
uweis et al. (2019) , Tu et al. (2018) ) for a discussion of this approach
nd its limitations). 

.2.2. Biophysical models in action 

This state of affairs generates a vast space of phenomena to be ex-
lained , model types, and investigative approaches. However, we be-
ieve that each of these aspects should be considered in light of one
verarching question: what unique insights does a particular combina-
ion provide us? 

For instance, models with greater biophysical realism (e.g., dynamic
ean field, Jansen-Rit) are especially well suited to investigate the ef-

ects of neuromodulatory influences at the macroscale, since they take
nto account the presence of distinct excitatory and inhibitory pop-
lations ( Deco et al., 2014 , 2013 ). These approaches have become
ncreasingly prominent thanks to the availability of empirical mea-
urements of the cortical distributions of neurotransmitter receptors
6 
nd transporters from in vivo PET ( Hansen et al., 2022 ) and post-
ortem autoradiography ( Goulas et al., 2021 ; Zilles and Palomero-
allagher, 2017 ), as well as the regional expression of associated genes

rom transcriptomics ( Arnatkevic ̆iute et al., 2019 ; Hawrylycz et al.,
012 ; Markello et al., 2021 ). Incorporating such biological information
as led not only to more realistic models ( Deco et al., 2021 ; Demirta ş
t al., 2019 ; Luppi et al., 2022a ; Müller et al., 2020 ), but also to mod-
ls capable of simulating pharmacological interventions with a variety
f different drugs, covering the range from psychedelics to anaesthet-
cs ( Burt et al., 2021 ; Coronel-Oliveros et al., 2023 , 2021 ; Deco et al.,
018a ; Kringelbach et al., 2020 ; Luppi et al., 2022c ). However, we note
hat a high degree of biological realism is not mandatory for a modelling
pproach to be able to capture the effects of pharmacological interven-
ions, as recently demonstrated e.g. with extensions of network control
heory that incorporate receptor expression to simulate the effects of
sychedelics ( Singleton et al., 2022 ), and previous work simulating the
ffects of anaesthesia using generalised Ising models from statistical me-
hanics ( Kandeepan et al., 2020 ; Stramaglia et al., 2017 ). 

On the other hand, Hopf/Stuart-Landau and Kuramoto models are
uitable for modelling the oscillatory character of brain activity, and
tudy aspects such as synchrony and metastability of neuronal oscil-
ations ( Cabral et al., 2017 a; Deco et al., 2017 ; Deco and Kringel-
ach, 2016 ; Váš a et al., 2015 ). Some approaches (e.g. Jansen-Rit) allow
or easier translation across different simulations of functional brain ac-
ivity (fMRI and EEG) ( Coronel-Oliveros et al., 2021 ) and others can
rovide more latitude for perturbation. For example, regional oscilla-
ions in a Hopf model can be made subcritical (i.e., their amplitude
aturally decay over time) or supercritical (i.e., the oscillations are sus-
ained with constant amplitude) ( Deco et al., 2019 ; Hahn et al., 2020 ;
piña et al., 2020 ; Jobst et al., 2017 ; López-González et al., 2021 ). Over-
ll, although it may be tempting to categorise modelling efforts in terms
f their choice of model (model family), we believe that the emphasis
hould be on what the model does and does not reproduce about brain
unction, and what opportunities and insights it offers. 

.2.3. Biophysical computational models of DOC: current approaches 

Over the last decade, whole-brain models of network dynamics have
hown promising potential to investigate the causes of altered brain ac-
ivity detected across DOC. Considering the dynamics of brain areas
nteracting in the neuroanatomical network (with different degrees of
iophysical realism), the simulated activity is found to reveal features
ualitatively similar to experimentally-recorded brain signals. 

In addition to models explicitly aimed at recapitulating DOC
 Abeyasinghe et al., 2020 ; Luppi et al., 2022c ; Sanz Perl et al., 2021 ),
iophysical models have also been employed to study other relevant
nd related conditions, such as the effects of brain lesions in con-
cious patients (e.g., stroke, brain injury; Rocha et al., 2022 ; Favaretto
t al., 2022 ), or the effects of loss of consciousness in the healthy brain
e.g., sleep, anaesthesia) ( Deco et al., 2017 ; Stramaglia et al., 2017 ;
andeepan et al., 2020 ; Ipiña et al., 2020 ; Hahn et al., 2020 ). Indeed,
ecent efforts have also been undertaken to explain the changes in brain
unction observed in DOC patients - typically capitalising on the com-
arison with anaesthetic-induced unconsciousness to distinguish lesion-
pecific and consciousness-specific effects. This has leveraged recent
mpirical work that demonstrated important similarities between the
rain dynamics of DOC patients and those of anaesthetised individu-
ls ( Barttfeld et al., 2015 ; Bonhomme et al., 2019 ; Campbell et al.,
020 ; Cao et al., 2019 ; Demertzi et al., 2019 ; Golkowski et al., 2021 ,
017 ; Gutierrez-Barragan et al., 2021 ; Huang et al., 2020 ; Luppi et al.,
019 ; Panda et al., 2022 ; Song et al., 2018 ) with subsequent exten-
ions identifying common underlying neuromodulatory mechanisms
 Spindler et al., 2021 ). 

Such models have to date capitalised on the similarities and dif-
erences between DOCs and anaesthesia, incorporating empirical evi-
ence about patients’ disrupted patterns of structural connectivity be-
ween brain regions ( Abeyasinghe et al., 2020 ; Luppi et al., 2022c , 2023 ;



A.I. Luppi, J. Cabral, R. Cofre et al. NeuroImage 275 (2023) 120162 

S  

2  

a  

o  

o  

p  

t  

d  

c  

i  

(  

D  

n  

w
 

o  

r  

e  

t  

C  

f  

n  

t  

2  

m  

o  

s  

K  

i  

n  

t  

t  

f  

i  

i
 

r  

n  

n  

2  

d  

n  

c

2

2

 

e  

s  

w  

d  

o  

c
 

t  

(  

fi  

i  

t  

u  

e  

t  

u  

(  

p  

f  

p  

j  

O
 

r  

p  

s  

t  

g  

w  

h  

o  

c  

s  

v  

a  

e  

(  

m  

m  

b  

l  

g  

t  

t  

c  

m  

r  

u  

a  

a  

c  

t

2

 

D  

t  

f  

l  

s  

a  

p  

t  

b  

m  

t  

k  

e  

b  

v
 

w  

p  

r  

w  

s  

a  

h  

w  

m  

a
 

t  

(  
anz Perl et al., 2021 ). For instance, Luppi and colleagues ( Luppi et al.,
022c ) showed that the dynamics of a dynamic mean-field model can be
ltered in comparable ways by a pharmacological perturbation (increase
f model regional inhibition in proportion to the empirical distribution
f GABA-A receptors, to simulate the effects of the GABA-ergic agent
ropofol) or by perturbing the structural connectome to be analogous
o the connectome of DOC patients. This work sought to explain how
ifferent changes to the brain’s normal functioning (transient pharma-
ological intervention versus chronic structural lesion) can lead to sim-
lar patterns of brain dynamics. Conversely, Sanz Perl and colleagues
 Sanz Perl et al., 2021 ) demonstrated that the states of anaesthesia and
OC can be distinguished in terms of how responsive they are to exter-
al perturbations, with DOCs being more resistant to change - consistent
ith their persistent nature versus the transient nature of anaesthesia. 

The focus on responsiveness to perturbations is no coincidence: one
f the best-performing empirical methods to estimate an individual’s
esidual consciousness, the Perturbational Complexity Index, relies on
valuating the EEG response to brief perturbations induced by pulses of
ranscranial magnetic stimulation ( Lee et al., 2022 ; Casali et al., 2013 ;
asarotto et al., 2016 ; Rosanova et al., 2018 ; Sarasso et al., 2021 ). There-

ore, several efforts have been underway that seek to reproduce this phe-
omenon in silico ( Bensaid et al., 2019 ), including incorporation into
he popular modelling framework of The Virtual Brain ( Goldman et al.,
021 ). For instance, a recent study ( Luppi et al., 2023 ) used a dynamic
ean-field model to demonstrate that the structural network alterations

f DOC patients are sufficient to induce less hierarchical propagation of
pontaneous events ( “intrinsic ignition ” ( Deco et al., 2017 ; Deco and
ringelbach, 2017 )), a phenomenon that is also observed empirically

n patients’ brains, and that correlates with compromised measures of
etwork controllability. Although these models offer some mechanis-
ic insight to explain the features that differentiate between conditions,
hey still lack precise predictive value and more efforts are needed to
ully realise the potential of computational models of brain stimulation,
n particular for the design of personalised stimulation strategies with
ncreased effectiveness ( Kurtin et al., 2023 ; Vohryzek et al., 2022 ). 

Other modelling efforts have also sought to capture aspects of the
ecovery process, by focusing on how brain activity spreads on the con-
ectome and how this changes as a result of perturbations that alter the
etwork’s topology ( Vasa et al., 2015 ; Cabral et al., 2012 ; Deco et al.,
018b ). For instance, it has been shown that recovery from DOCs in-
uced by severe injury may depend on re-routing of functional con-
ections whose structural connections are impaired, without necessarily
hanging the SC itself ( Kuceyeski et al., 2016 ). 

.3. Mixed modelling strategies 

.3.1. Combining models to overcome their specific limitations 

At this point, it is worth acknowledging that in describing the differ-
nt model types, we have inevitably highlighted their differences - but
imilarities of course abound. All models are in some sense data-driven:
hether because they look for patterns in the data, or because they use
ata to determine model fit and model parameters. Moreover, the choice
f model type and features (if applicable) determines what the model
an provide, such that none of these models is completely data-driven. 

More broadly, a modelling workflow may involve multiple model
ypes, by combining descriptive and generative statistical modelling
e.g., by performing statistical comparisons based on features identi-
ed by ML), or by combining statistical and biophysical modelling. For

nstance, unsupervised k-means clustering (a type of descriptive statis-
ical modelling that clusters data based on specific features) may be
sed to identify distinct brain-states that can then be tested for differ-
nces in terms of relevant features (e.g., state occupancy) through statis-
ical General Linear Models ( Barttfeld et al., 2015 ; Lord et al., 2019 ) or
sed to identify target features to fit a biophysical computational model
 Deco et al., 2019 ; Kringelbach et al., 2020 ). In addition to ML, bio-
hysical computational models can also be used to extract additional
7 
eatures for discriminative models, such as identifying the global cou-
ling parameter G that enables a biophysical model to best fit each sub-
ect’s empirical data, and then comparing groups based on this ( Coronel-
liveros et al., 2023 ; Deco et al., 2017 ). 

As we described above, the application of ML algorithms to neu-
oimaging data shows great promise for classifying physiological and
athological brain states. However, classifiers trained on high dimen-
ional data are prone to overfitting, especially for a low number of
raining samples. To overcome this roadblock, over the last years strate-
ies were developed that combine whole-brain computational models
ith statistical models ( Vohryzek et al., 2022 ). The main rationale be-
ind these strategies is to take advantage of the generative capabilities
f the whole-brain model to meet the requirements that the statisti-
al models have, in terms of the amount of data required to achieve
ufficient statistical power and make generalisable predictions. In this
ein, Arbabyazd and colleagues developed whole-brain models to cre-
te surrogate data to train random forest and Boost algorithm ML mod-
ls to classify Alzheimer’s disease patients and healthy participants
 Arbabyazd et al., 2021 ). The authors demonstrated that the perfor-
ance of both classifiers is comparable with that obtained when the
odels are trained with empirical data. Another strategy that combines

oth whole-brain and statistical models is postulated by Gilson and col-
eagues ( Gilson et al., 2019 ). The whole-brain model fitting procedure
enerates model parameters, and the resulting effective connectivity be-
ween brain regions (quantification of the influence of one region’s ac-
ivity over the activity of another) can be used to train statistical dis-
riminative models to classify different brain states. This shows that the
odelling types can be combined into a “virtuous cycle ”, progressively

efining the features and identifying which ones could be intervened
pon. Generative models can also be used for data augmentation (i.e.,
 mathematical process to generate synthetic data with the purpose of
ugmenting the training dataset, thus enhancing the model’s learning
apacity) to help improve the discriminative models, so the synergy be-
ween the two approaches can go both ways. 

.3.2. Mixed models of DOC: current approaches 

Combining machine learning and descriptive statistical modelling,
emertzi et al. (2019) and Luppi et al. (2019) both used k-means clus-

ering to identify multiple dynamic states of brain connectivity from
unctional MRI of DOC patients and healthy controls. Demertzi and col-
eagues then extracted the prevalence of each state, and through de-
criptive statistical modelling demonstrated that UWS patients spend
 greater proportion of time in a pattern characterised by high cou-
ling with the underlying structural connectivity, with smaller chances
o transition between patterns. This study also shows the value of com-
ining not only multiple modelling strategies, but also multiple imaging
odalities. Luppi and colleagues instead focused on network proper-

ies of the different dynamic functional connectivity states identified by
-means clustering, demonstrating through descriptive statistical mod-
lling that a brain state of high network integration is especially affected
y loss of consciousness, both in DOC patients and anaesthetised indi-
iduals. 

In recent work, Sanz Perl et al. (2020) proposed implementing
hole-brain models as a dynamical model informed data augmentation
rocedure to create meaningful surrogate data keeping the spatiotempo-
al structure of the original data. In that work, a random forest classifier
as trained to discriminate between sleep stages and wakefulness with

urrogate data generated with whole-brain models fitted to individual
nd group average empirical data for different stages of the wake-sleep
uman cycle. In both cases, the classifiers showed good performance
hen evaluated against empirical data, demonstrating that statistical
odels can be trained with whole-brain model individual and group

verage synthetic data. 
Dynamical model data augmentation procedure was also used

o train unsupervised statistical models. For instance, in Perl et al.
2020) the authors trained a variational autoencoder (VAE) with syn-
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hetic functional connectivity corresponding to wakefulness and deep
leep to obtain a low-dimensional representation of brain states. This
trategy allowed the authors to find an orderly trajectory from wakeful-
ess to brain injured patients in a latent space whose coordinates rep-
esent metrics related to functional modularity and structure-function
oupling, both increasing alongside loss of consciousness. These results
uggest that other brain states (e.g., DOC) could be captured and un-
erstood in terms of trajectories within a low-dimensional latent space,
ith potential applications in diagnosis and prognosis. 

. Interim summary 

Overall, while both generative statistical and biophysical compu-
ational models aim to simulate the outcome, only the biologically-
nspired models aim to simulate the entire data-generating process. This
ausal flavour is derived from their biological inspiration - with the un-
erstanding that insight into causality should be rooted on models that
re biologically realistic. This means that biophysical computational
odels are also well suited to providing insight about counterfactuals,

y directly simulating the effects of an intervention, ( Fig. 3 ) and there-
ore about the likely effects of a given treatment option. This stands in
ontrast with statistical models, which are most suited to diagnosis and
rognosis. Of course, since generative statistical models learn the joint
robability distribution of multiple features, it is possible to use such
odels to explore how variation in one feature would affect another. For

nstance, to test the effects of a certain drug, one could first assess how
his drug modifies the features of interest in the data, and then explore
he region of modelled data-space that corresponds to these changes.
owever, such out-of-sample generalisations are notoriously difficult.

n contrast, having a causal model of how one variable influences the
hole system’s behaviour is precisely the raison d’etre of biophysical

omputational models, as such relationships can be explicitly encoded. 
ig. 3. Overview of using biophysical computational models to evaluate cau

econstructed from diffusion MRI tractography, which provides the global connectivity
esions or plasticity. Additionally, perturbations to the local dynamics of each regio
imulated activity and functional connectivity can then be compared against empiric

8 
In other words, descriptive models are well suited to identify rele-
ant features out of many possible candidates, but because they do not
xplicitly model the process by which such features come to be relevant,
hey do not on their own provide insight on how to act on them: they
o not tell the clinician how to intervene. Generative statistical models
nd biophysical models can help to test possible interventions for the
romising features identified by discriminative models: the foundations
owards “digital twins ”. The downside is that finding the appropriate
evel of biological complexity is not straightforward: a mismatch with
eality will always be present, to some extent, and it can be challeng-
ng to determine whether it is innocuous abstraction, inevitable noise,
r misleading mis-specification. However, as reviewed in the section on
ixed modelling strategies, research efforts have been ongoing to com-

ine the strengths of both modelling approaches, and to use one to miti-
ate the shortcomings of the other, representing the source of numerous
ecent insights. 

. The road towards a mature field of DOC modelling 

Having provided an overview of the different kinds of modelling ap-
roaches that are being employed to investigate disorders of conscious-
ess, in this second part of our article we provide recommendations for
ow the field can move forward: the challenges that lie ahead, and how
e believe that they can be overcome. 

.1. Open challenges in simulating DOC 

Despite these favourable characteristics, applications of whole-brain
odelling to DOCs are relatively recent, arguably because this endeav-

ur involves substantial challenges. In effect, the complexity and het-
rogeneity of DOCs in terms of aetiology — with each patient typically
sal interventions . Empirical structural connectivity between regions can be 
 between regions. Perturbations can be applied to this connectivity, to simulate 
n can simulate neuromodulatory influences and pharmacology. The resulting 
al data, to evaluate the model’s goodness-of-fit. 
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resenting unique patterns of cerebral lesions and deficits — greatly
omplicates extrapolating modelling paradigms based on healthy brains.

One way to approach the challenge of modelling brain activity of
atients with DOC is to decompose the problem into two more tractable
uestions: (i) modelling unconsciousness, and (ii) modelling brain dam-
ge. As testbeds to model unconsciousness, at least three candidates
resent themselves: the endogenous, transient state of unconsciousness
omprising dreamless (deep) sleep; the endogenous but pathological
nconsciousness of epileptic seizures; and exogenously induced uncon-
ciousness resulting from the administration of general anaesthetics -
hich unlike sleep, is a perturbation of the brain’s spontaneous state, in

his sense resembling DOC more than sleep does. These conditions can
lso be studied in animal models, where there is enormously greater ca-
acity for experimental access and manipulation, leading to substantial
dvances in our understanding of their neurobiology. In turn, this neu-
obiological knowledge makes it possible to formulate specific mech-
nistic hypotheses based on experimental results, and develop suit-
ble computational models spanning from very biologically detailed
nes ( Ching et al., 2010 , 2012 ) to more abstract ones that neverthe-
ess capture well-known features of the anaesthetised or sleeping brain
 Deco et al., 2017 ; Kandeepan et al., 2020 ; Stramaglia et al., 2017 ). 

On the other hand, anaesthesia and sleep are typically studied in the
ealthy brain in humans, whereas DOCs typically involve lesions of var-
ed extent and location, such that both grey and white matter can be af-
ected. However, not all brain lesions result in chronic disorders of con-
ciousness, and neuroscientists have developed computational models to
nderstand the effects of brain damage on patients’ cognition and brain
unction. For example, previous studies have shown that computational
odelling can provide specific predictions of cognitive impairment link-

ng structural lesions and their effect on neurodynamics ( Cabral et al.,
017a ; Vasa et al., 2015 ; Rocha et al., 2022 ; Favaretto et al., 2022 ) —
n particular highlighting the role of the integrity of “hub ” nodes for the
ssessment of cognitive loss. For both models of unconsciousness and
odels of brain injury, animal models have played a fundamental role in

haping our understanding, thanks to their greater experimental acces-
ibility ( Beppi et al., 2023 ; Redinbaugh et al., 2020 ; Bastos et al., 2021 ;
asserie et al., 2022 ; Barttfeld et al., 2015 ; Gutierrez-Barragan et al.,
021 ). Studies in anaesthetised macaques provided the first evidence
hat brain structural and functional connectivity become more similar
hen consciousness is lost ( Barttfeld et al., 2015 ) - which was later

onfirmed both in mice ( Gutierrez-Barragan et al., 2021 ) and humans
 Demertzi et al., 2019 ). More recently, several studies demonstrated
hat electrical stimulation of the central thalamus can restore neural
nd behavioural signatures of consciousness in anaesthetised macaques
 Redinbaugh et al., 2020 ; Bastos et al., 2021 ; Tasserie et al., 2022 ), a
eat which is possible thanks to animals’ greater experimental accessibil-
ty. Developing computational models of animal models (as done e.g. by
ahn et al. 2020 ) is therefore going to be a key stepping stone towards

he human counterpart. 
We note that in order to characterise the current gaps that need to

e bridged, it is not sufficient to identify the current state of the art:
ne must also clearly define the goals to be achieved. Upon doing so, it
ecomes apparent that for the present endeavour, two different kinds of
oals exist, which are closely aligned but nevertheless not identical. On
ne hand, there is the clinicians’ goal to improve diagnosis and prog-
osis and ultimately treat (or at least alleviate the suffering of) patients
ith DOC. On the other hand, there is the scientific goal of understand-

ng how the brain can become stuck in a state of chronic unconscious-
ess, and how this illuminates the mechanisms that in the healthy brain
nable consciousness to emerge from matter. The history of medicine
s replete with examples of treatments that were discovered serendipi-
ously or through trial and error, and hence employed before being fully
nderstood. Arguably, the mechanisms of anaesthesia, one of the most
mportant tools in medical history, remain incompletely understood -
hich fortunately does not prevent anaesthetists from using it to spare
atients the intolerable suffering of surgery. Nevertheless, a greater sci-
9 
ntific understanding can only benefit the clinical approach, both in
erms of diagnosis and treatment. However, a scientist may be satisfied
ith more abstract understanding at the group level, whereas clinicians

nevitably do not treat groups, but individuals - and they have a stronger
ncentive to provide timely answers, since they cannot indefinitely put
ff decisions about treatment avenues. Therefore, in this aspect the sci-
ntific and clinical goals diverge, and this divergence needs to be consid-
red when outlining our desiderata as a community and how we intend
o attain them. 

In particular, the clinical and scientific perspectives may hold dif-
erent views on the main trade-off involved in biophysical/generative
odelling of DOC: biological realism versus complexity. If we want to
ave models that help us to predict outcomes or evaluate in silico the
otential for different treatments, then a mis-specified model that fails
o take into account relevant aspects of neurobiology (the definition of
hich is itself part of the problem, of course) may constitute a costly
istake. Likewise for the case where statistical/discriminative models

re being used for diagnostic/prognostic purposes, or to identify patients
or more in-depth investigation. This issue is intertwined with the mod-
ller’s perennial question: what counts as a well-fitting model? There
re two parts to this question. On one hand, the model must be able
o match the desired aspect of the data. But perhaps even more impor-
antly, such an aspect (the loss function in terms of which the model is
valuated) must be properly identified. A model that faithfully repro-
uces the wrong function is at best useless, and at worst actively mis-
eading. Finding a suitable objective function - in this case, a neuroimag-
ng marker that a given brain is capable of entertaining consciousness
 is a task for empirical investigations of consciousness, to be aided by
iscriminative statistical models. 

With this in mind, we lay out four main aspirations for the modelling
f DOC; for each desideratum, we also highlight what we see as the most
ressing challenges, and we outline some potential approaches that we
elieve could contribute to address such challenges. 

.2. Desiderata for the future of DOC modelling 

.2.1. Desideratum 1: greater generalisability 

Models need to be able to generalise across individuals and across
ifferent aetiologies (e.g., traumatic versus anoxic/hypoxic injury).
ore broadly, models should generalise across different cohorts. Within

he same individuals, models ought to be able to provide a match for a
articular individual’s multimodal data, reflecting their capacity to truly
rovide insight about the patients’ brains. Generalising to the broader
opulation is the implicit goal of the statistical tests we employ, and
bility to do so is a marker that we possess true scientific insight into a
iven phenomenon. 

Building models that capture multimodal data can help to address
he first challenge that we face when trying to improve generalisability:
he need to identify relevant spatial and temporal scales that our mod-
ls should aim to capture. For instance, fMRI and EEG differ in terms of
oth spatial and temporal resolution, so a model that can simulate both
ould imply the ability to capture both slow and fast dynamics. Addi-

ionally, models that can provide a good fit to multiple modalities (e.g.,
oth fMRI and EEG data) provide intrinsic validation for their biologi-
al plausibility. This avenue of addressing the first challenge to gener-
lisation can capitalise on the existence of rich datasets about patients,
panning not only neuroimaging but also neurotransmitter expression,
ranscriptomics and proteomics, which are now becoming increasingly
vailable. Of course, the success of this endeavour depends on the data
eing compatible and of high enough quality, to make sure that the
dditional data are not merely adding noise. In particular, multi-modal
odels may best enhance generalizability when cross-modal data at dif-

erent scales are effectively integrated. 
A second challenge to generalisation is that DOC patients vary widely

ot only in terms of diagnosis, but also in terms of lesion extent and loca-
ion, as well as severity and aetiology. This means that the boundaries
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Fig. 4. “Digital Twin ” approach. The EEG data are used as an example application. The patient’s data are fitted with a personalised brain model, creating a "digital 
twin" of the patient whose simulated activity best resembles the patient’s empirical EEG. The effects of various interventions are then simulated on the “digital twin ”
and evaluated based on goodness of fit compared to normative data from healthy controls. The underlying assumption is that an intervention that makes the EEG 

activity of the “digital twin ” resemble the EEG of control subjects may be a good candidate for a clinical intervention in the patient. 
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or generalisation remain ill-defined: which subset of patients consti-
ute an intended target for generalisation (such that failing to gener-
lise to such patients indicates a shortcoming of the model), and which
atients are instead simply beyond the scope of the model? To address
his challenge, a useful starting point may be to identify homogeneous
ub-groups of DOC patients with similar diagnosis and similar aetiology,
nd use this sub-group-level as a stepping stone between the individual-
evel and the broader group-level. In particular, it may be especially
ruitful to focus on patients displaying similar constellations of symp-
oms, and building models that can be differentially perturbed to obtain
ndividual-specific symptomatology. 

An intriguing potential avenue for generalisation is the recent pro-
osal that late stages of dementia may be behaviourally equivalent to
OC ( Huntley et al., 2021 ). If so, this would provide an invaluable ad-
itional source of information, since the progression is gradual and ob-
ervable, unlike most of the injuries that lead to current DOC patients’
dmission. However, this avenue is itself not without challenges. Grad-
al atrophy of a region due to neurodegeneration need not produce the
ame cognitive and behavioural deficits caused by sudden ischaemic
troke or traumatic lesion of the same region. Therefore, the rate of
hange, and resulting role of plasticity, may point to distinct processes.
evertheless, the greater similarity between gradual progression stages
f brain degeneration in dementia may provide a suitable testing ground
or models to generalise. 

.2.2. Desideratum 2: patient-specificity 

As anticipated above, the clinical need is to treat individual patients,
nd one of the greatest promises of modelling is the possibility to de-
elop personalised models for each patient, in the vein of the “Digital
wins ” paradigm ( Fig. 4 ). This can broadly take two forms. Under the
rst approach, a “digital twin ” of patient X is a model obtained from
ggregating large amounts of data from other patients who resemble
atient X in some relevant aspect, with the aim of triangulating on this
pecific patient. Under the second approach, a “digital twin ” is built
rom the patient’s own multimodal data. Of course, the two approaches
10 
re not mutually exclusive: group data can be used to “fill in ” missing
nformation about a patient in question. 

This is especially valuable given the wide variability of DOC pa-
ients and their trajectories. Unfortunately, the risk is that models may
nd up fitting idiosyncrasies rather than capturing what is still com-
on across DOC patients: their impaired consciousness. In other words,

ingle-patient modelling risks overfitting to features unrelated to DOC
especially since each patient often presents a unique and complex ae-
iology, with a potential host of deficits and impairments that are not
irectly related to their unconscious status). Under such conditions, clin-
cians with an interest in simulating treatment options find themselves
etween the Scylla of using a group-level model that may not apply
o their specific patient and his/her needs; and the Charybdis of using
 personalised model, but with little confidence that it reflects gener-
lizable information. Therefore, the main challenge to patient-specific
odels is to establish trust in single-patient predictions, mitigating the

mpact of overfitting and measurement noise. 
Personalised models could be created, for example, using a transfer

earning-like approach wherein the model begins by representing a pop-
lation and is fine-tuned using an individual’s observed data ( Gu et al.,
022 ). These personalised models would then have to be tested in how
ell they reflect empirical data. This could be accomplished by suc-

essfully predicting a patient’s trajectory, matching longitudinal data. A
econd, more demanding bar to clear would be to show that a model
an successfully predict the effects of a given intervention on a patient.
his could be done for patients who are already due to receive a given
reatment (e.g., a specific medication). If replicable across patients, this
ould provide the kind of evidence that the model may also be suitable

o inform the choice of treatment. 

.2.3. Desideratum 3: models of recovery 

The current state of DOC modelling focuses primarily on distinguish-
ng between groups, with the goal being either diagnosis or obtaining
 mechanistic understanding of loss of consciousness (or a combination
f both). However, the prime clinical goal is to achieve recovery, and
herefore, there is a need for models that can reflect the recovery pro-
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ess: both its spontaneous course (which would also aid prognosis), and
ow it can be promoted or accelerated through interventions. The main
hallenge to this goal is that few patients fully recover, and many instead
ecline; and for those who do recover, this process is typically very pro-
racted and gradual, rather than an abrupt change ( Edlow et al., 2020 ).
f we do not understand how the brain recovers, we remain limited in
ur ability to help it to recover. 

Conceptually, it cannot be expected that the process of recovery from
OC will mirror the process of loss of consciousness, as one might ex-
ect to happen for sleep or anaesthesia, because it is not possible to
imply “un-do ” the damage that a patient has suffered, in the way that
naesthesia wanes as the drug concentration is diminished. And in fact,
ven for sleep and anaesthesia there is growing evidence that loss and
ecovery of consciousness are actually asymmetric, with an “inertia ” or
ysteresis effect being observed for both, suggesting more complex tran-
itions ( Friedman et al., 2010 ; Kuizenga et al., 2018 ; Luppi et al., 2021b ;
roekt and Hudson, 2018 ). Additionally, even if the process were sym-
etric, we do not have imaging data about the moment of the injury,

n the same way that we can image anaesthetic-induced loss of respon-
iveness. 

Nevertheless, some ways to mitigate these limitations can be envi-
ioned. First, emergence from sleep and anaesthesia, though imperfect
odels, can still provide valuable insights about the general process of

ecovering consciousness. Second, in some cases it may be possible to
can patients before and after treatment: especially if such treatments
ere to show a degree of success (such as the effects that zolpidem on a

mall subset of DOC patients ( Noormandi et al., 2017 )), then the pre- vs
ost-treatment comparison could provide insights about emergence to
nform modelling efforts. Third, longitudinal imaging can provide data
bout both gradual recovery and gradual decline, which can then be
sed as benchmarks for models intended to capture disease progression
ather than just static snapshots. 

Imaging acute patients can also provide clearer data closer to the
ime of loss of consciousness, while also providing the occasion to make
odel-based predictions that can then be evaluated against the actual
rogression of the patient (although the acute phase during intensive
are is inevitably complicated by practical difficulties and confounds
uch as sedation). In this context, studies of recovery from stroke or
BI without loss of consciousness could provide an avenue to decou-
le brain injury and repair from their effects on consciousness, for in-
tance in terms of spatial distribution of damage ( Maas et al., 2022 ,
014 ; Olafson et al., 2022 , 2021 ), which is undoubtedly one of the key
hallenges. This approach can then be complemented by studies of loss
nd recovery of consciousness in animal models, where causal interven-
ion is more feasible and there can be greater experimental access; recent
ork has been identifying promising stimulation targets to awaken non-
uman primates from anaesthesia, and modelling this scenario offers a
lear avenue to make progress on the field’s ability to model recovery of
onsciousness ( Bastos et al., 2021 ; Donoghue et al., 2019 ; Tasserie et al.,
022 ). Together, these approaches may offer a way to devise models of
ecovery from DOC, by modelling different aspects of the recovery pro-
ess, across multiple timescales. To this end, incorporating aspects of
emporal evolution over the long term (e.g., plasticity of connections
 Hellyer et al., 2016 )) will be a key direction for the field. 

.2.4. Desideratum 4: improved confidence 

This last desideratum is not unique to modelling DOCs, but rather it is
 broader one that is shared with modern applications of modelling and
achine learning, especially in science and healthcare. Namely, models
eed explainability, accountability, reliability, in order to be used with con-
dence. Can the model provide an understandable explanation of the de-
ision? Does it explain how and what it learnt from the data? Some work
as already been carried out in this direction, by adopting interpretable
eep learning approaches to the classification of sleep, anaesthesia, and
athological unconsciousness (DOC) based on EEG features ( Lee et al.,
11 
022 ). These authors showed that the model can disambiguate between
wareness and arousal, correlating with intervention-based approaches.

This desideratum can be summarised by saying that “models must
ot be black-boxes ” ( Castelvecchi, 2016 ; Heinrichs and Eickhoff, 2020 ).
o address these goals, some considerations need to be first taken into
ccount. Firstly, model fitting: many of the smaller-scale biophysical
omputational models are ill-parameterized and may result in overfit-
ing; and the same may also apply to statistical approaches:an issue that
s also related to our desideratum about generalisability. Multiple av-
nues exist to address this challenge. On one hand, repeated studies on
he same patients could help to boost confidence and increase the signal-
o-noise ratio within individual patients. This could be combined with
ncreased data-sharing to pool samples across different cohorts, which
ould not only contribute to generalisability, but also provide better
ays to avoid overfitting via cross-validation. This approach would also

ncrease the representation of each sub-group of patients - as well as po-
entially helping to identify relevant sub-groups for stratification. With
ata-sharing comes the need to harmonise data acquisition paradigms
rom different sites ( Orlhac et al., 2022 ; Pomponio et al., 2020 ) as well as
sing homogeneous preprocessing pipelines and consistent fitting pro-
edures across studies, to make research more comparable and facilitate
dentifying improvements over the state-of-the-art - which is typically
ot possible in current research, when studies differ in terms of model
sed but also cohort, data processing, and fitting criterion. 

. General recommendations 

In addition to the Desiderata outlined above, there are also a number
f more general recommendations that we believe would help both the
tudy of DOCs as a whole, and the more specific endeavour of modelling
OCs. 

First, adding to the call for data-sharing and harmonisation, we be-
ieve that DOC research should take inspiration from the non-human
rimate neuroscience. Like most DOC datasets, non-human primate neu-
oimaging datasets tend to comprise a relatively small number of indi-
iduals, due to the difficulties of data collection. In non-human primate
euroscience, one way to overcome this limitation has been by repeated
ata acquisition from the same individual, to boost the signal-to-noise
atio. To the extent that this is feasible for DOC patients, we believe
hat availability of multiple scanning sessions, both with the same and
ith different neuroimaging modalities, would be of great help to the
odelling effort. Additionally, the field of non-human primate neuro-

cience has recently come together to organise large-scale data-sharing
nitiatives to accelerate research, and we hope for a similar initiative for
OC ( Michael Milham et al., 2018 ). 

A second avenue for progress in DOC modelling research will be
o combine not only different flavours of models, but also combine and
terate between theory- and data-driven approaches ( Luppi et al., 2021 ).

e envision that the development of in silico models that reproduce the
L-derived insights will be an essential component of a mature field of
OC modelling. 

Third, it will be important to obtain a more comprehensive (and
deally, more formal) understanding of how the space of possible models
atches onto the space of modelling goals, in the context of DOC. In

ther words: when does each model stop being applicable? As modelling
nd model types evolve, so will this landscape change. 

Finally, with new technologies inevitably come new considerations
ertaining to their ethical use. In particular, we have advocated for the
rospect of using models to assess the expected outcome of a given
reatment option, for a given patient, in the paradigm of “digital twins ”
 Vohryzek et al., 2022 ). The question arises, however: If modelling sug-
ests that a treatment is likely to be ineffective, to what extent should
his be sufficient grounds for not attempting the treatment? We expect
hat there is no one-size-fits-all answer to this question: rather, as mod-
ls become more personalised and their predictive power increases, they
ay become a greater component of the broader cost-benefit evalua-
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ion pertaining to each patient. We do not expect that such models will
eplace clinicians’ assessment, nor do we think that this would be de-
irable: rather, they will provide clinicians with additional information
hen forming their expert judgments. 

. Concluding remarks 

Overall, modelling approaches are perhaps one of the most promis-
ng avenues of progress in our understanding of disorders of conscious-
ess, owing to the combination of increasing computational resources
nd increasingly detailed and powerful models. Although a number of
aps exist in the current state-of-the-art, we have outlined how the field
ould overcome these gaps to realise the full scientific and clinical power
f computational modelling. The possibility of building “digital twins ”
nd using them for “Phase 0 clinical trials ” may substantially advance
ur ability to identify suitable treatments for individual patients, cap-
talising on the increasing amounts of multimodal neuroimaging data
vailable. 

In this context, we emphasise that there is a distinction to be drawn
etween modelling the difference between a conscious and an uncon-
cious brain, and developing a full theory of consciousness (in terms
f what consciousness “is ”). We acknowledge that understanding con-
ciousness is a challenging question to address, and a full understanding
f human consciousness will require a concerted, multi-disciplinary ap-
roach well beyond the one outlined here: our goal is focused towards
linical relevance. Nevertheless, throughout the history of medicine,
reatment has often preceded the detailed understanding of the ailment.

e believe that a mature state of computational modelling of DOC will
rovide invaluable tools for personalised diagnosis, prognosis, and treat-
ent, but we also believe that in the process of achieving this status,

omputational models will continue to provide important insights about
onsciousness itself. 

We reiterate that our modelling taxonomy is not meant to be exhaus-
ive or definitive. Indeed, our group of expert scientists and clinicians
isagreed at times about the most suitable way to characterise the dif-
erent model types, and which ones should be grouped together, and un-
er what title. Are biophysical and statistical models “generative ” in the
ame sense? Would it be more helpful to describe the main distinction
etween models as “top-down ” (testing a given feature of interest) ver-
us “bottom-up ” (putting together the pieces to reproduce a behaviour
f interest)? In some sense, the word “model ” itself may simply hold dif-
erent meanings for different researchers. We hope that this work will
ontribute to establishing a common ground and a common reference
or discussing modelling approaches in the context of disorders of con-
ciousness, so that clinicians and computationalists will achieve greater
ntegration of different approaches, to overcome the challenges that we
ave outlined here, and achieve greater progress towards our shared
oal: curing coma. 
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