328 research outputs found

    Bilateral native nephrectomy improves renal isograft function in rats

    Get PDF
    Bilateral native nephrectomy improves renal isograft function in rats. Bilateral native nephrectomy has been suggested to improve renal allograft survival in man. This effect may be most prominent in patients experiencing acute tubular necrosis following transplantation. Thus, native kidneys may alter the course of ischemic acute tubular necrosis in the transplanted kidney. In the present studies, we utilized an experimental model of syngeneic transplantation in which rejection does not occur. We studied Lewis rat renal isografts transplanted into littermates following sham, unilateral or bilateral native nephrectomy. In a fourth group of rats, we evaluated the importance of native kidney excretory function by studying isografts transplanted into littermates with bilaterally obstructed native kidneys. Renal blood flow and excretory function were measured in vivo, eight days following transplantation. Renal excretory function of isografts transplanted into animals following bilateral native nephrectomy was similar to normal nontrans-planted Lewis kidneys. The presence of either one or both functioning native kidneys significantly reduced isograft inulin clearance, PAH clearance, and blood flow. However, when isografts were transplanted into Lewis rats with bilaterally obstructed native kidneys, renal isograft inulin clearance and blood flow were not significantly impaired Non-transplanted kidneys demonstrated “functional hypertrophy” following contralateral nephrectomy, with glomerular filtration rate and renal blood flow increasing by approximately 50%. In contrast, isograft glomerular filtration rate in animals following bilateral native nephrectomy was equivalent to that of single kidneys from normal animals with both kidneys in situ. However, renal blood flow of isografts from these animals increased to the same level as nontransplanted Lewis kidneys following contralateral nephrectomy. Histological examination of isografts from animals with functioning native kidneys in situ demonstrated extensive disruption of normal renal architecture with tubular and interstitial injury. This was in marked contrast to the appearance of Lewis–Brown Norway allografts, to isografts from animals following bilateral native nephrectomy, and to isografts from animals with bilaterally obstructed native kidneys. In Lewis–Brown Norway allografts, there was evidence of rejection with active inflammatory cell infiltration, arteriolitis and venulitis. In isografts from animals following bilateral native nephrectomy or with bilaterally obstructed native kidneys, renal architecture was normal. Thus, the detrimental effect of native kidneys on isograft function may be related to impaired recovery from ischemia or potentiation of ischemic injury which occurs during the transplantation procedure

    Chronic rejection of mouse kidney allografts

    Get PDF
    Chronic rejection of mouse kidney allografts.BackgroundChronic renal allograft rejection is the leading cause of late graft failure. However, its pathogenesis has not been defined.MethodsTo explore the pathogenesis of chronic rejection, we studied a mouse model of kidney transplantation and examined the effects of altering the expression of donor major histocompatibility complex (MHC) antigens on the development of chronic rejection.ResultsWe found that long-surviving mouse kidney allografts develop pathological abnormalities that resemble chronic rejection in humans. Furthermore, the absence of MHC class I or class II antigens did not prevent the loss of graft function nor alter the pathological characteristics of chronic rejection. Expression of transforming growth factor-β (TGF-β), a pleiotropic cytokine suggested to play a role in chronic rejection, was markedly enhanced in control allografts compared with isografts. However, TGF-β up-regulation was significantly blunted in MHC-deficient grafts. Nonetheless, these differences in TGF-β expression did not affect the character of chronic rejection, including intrarenal accumulation of collagens.ConclusionsReduced expression of either class I or II direct allorecognition pathways is insufficient to prevent the development of chronic rejection, despite a reduction in the levels of TGF-β expressed in the allograft. This suggests that the severity of chronic rejection is independent of the level of MHC disparity between donor and recipient and the level of TGF-β expression within the allograft

    Factors Associated with Survival of Veterans with Gastrointestinal Neuroendocrine Tumors

    Get PDF
    Background. Gastrointestinal (GI) neuroendocrine tumor (NET) incidence has been increasing; however, GI NET within the national Veterans Affairs (VA) health system has not been described. Methods. We used the VA Central Cancer Registry to identify the cohort of patients diagnosed with GI NET in 1995–2009. Cox regression models were constructed to explore factors associated with survival. Results. We included 1793 patients with NET of the stomach (9%), duodenum (10%), small intestine (24%), colon (19%) or rectum (38%). Twenty percent were diagnosed in 1995–1999, 35% in 2000–2004, and 45% in 2005–2009. Unadjusted 5-year survival rates were: stomach 56%, duodenum 66%, small intestine 52%, colon 67%, and rectum 84%. Factors associated with shorter survival were increasing age, hazard ratio (HR) 1.05 (95% CI 1.04–1.06), NET location [compared to rectum: stomach HR 2.26 (95% CI 1.68–3.05), duodenum HR 1.70 (95% CI 1.26–2.28), small intestine HR 1.85 (95% CI 1.42–2.42), and colon 1.83 (95% CI 1.41–2.39)], stage [compared to in situ/local: regional HR 1.15 (95% CI 0.90–1.47), distant HR 2.38 (95% CI 1.87–3.05)], and earlier period of diagnosis [compared to 1995–1999: 2000–2004 HR 0.70 (95% CI 0.59–0.85), 2005–2009 HR 0.43 (95% CI 0.34–0.54)]. Conclusions. The incidence of GI NET has also increased over time in the VA system with similar survival rates to those observed in non-VA settings. Worsened survival was associated with older age, tumor site, advanced stage, and earlier year of diagnosis

    Deficiency of COX-1 causes natriuresis and enhanced sensitivity to ACE inhibition

    Get PDF
    BACKGROUND: Prostanoid products of the cyclo-oxygenase (COX) pathway of arachidonic acid metabolism modulate blood pressure (BP) and sodium homeostasis. Conventional non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit both COX isoforms (COX-1 and -2), cause sodium retention, exacerbate hypertension, and interfere with the efficacy of certain anti-hypertensive agents such as angiotensin-converting enzyme (ACE) inhibitors. While a new class of NSAIDs that specifically inhibit COX-2 is now widely used, the relative contribution of the individual COX isoforms to these untoward effects is not clear. METHODS: To address this question, we studied mice with targeted disruption of the COX-1 (Ptgs1) gene. Blood pressure, renin mRNA expression, and aldosterone were measured while dietary sodium was varied. To study interactions with the renin-angiotensin system, ACE inhibitors were administered and mice with combined deficiency of COX-1 and the angiotensin II subtype 1A (AT1A) receptor were generated. RESULTS: On a regular diet, BP in COX-1-/- mice was near normal. However, during low salt feeding, BP values were reduced in COX-1-/- compared to +/+ animals, and this reduction in BP was associated with abnormal natriuresis despite appropriate stimulation of renin and aldosterone. Compared to COX-1+/+ mice, the actions of ACE inhibition were markedly accentuated in COX-1-/- mice. Sodium sensitivity and BP lowering also were enhanced in mice with combined deficiency of COX-1 and AT1A receptor. CONCLUSIONS: The absence of COX-1 is associated with sodium loss and enhanced sensitivity to ACE inhibition, suggesting that COX-1 inhibition does not cause hypertension and abnormal sodium handling associated with NSAID use

    Pilot randomized trial of an electronic symptom monitoring and reporting intervention for hospitalized adults undergoing hematopoietic stem cell transplantation

    Get PDF
    Purpose: Patients undergoing a hematopoietic stem cell transplantation (HCT) have varied symptoms during their hospitalization. This study examined whether daily symptom reporting (with electronic patient-reported outcomes [PROs]) in an inpatient bone marrow transplant clinic reduced symptom burden on post-transplant days +7, +10, and +14. Methods: A prospective, single-institution1:1 pilot randomized, two-arm study recruited HCT patients. HCT inpatients (N=76) reported daily on 16 common symptoms using the PRO version of the Common Terminology for Adverse Events (PRO-CTCAE). Fisher’s exact test was used to examine differences in the proportion of patients reporting individual symptoms. Multivariable linear regression modeling was used to examine group differences in peak symptom burden, while controlling for symptom burden at baseline, age, comorbidity, and transplantation type (autologous or allogeneic). Results: HCT patients receiving the PRO intervention also experienced lower peak symptom burden (average of 16 symptoms) at days +7, +10, and +14 (10.4 vs 14.5, p =0.03). Conclusions: Daily use of electronic symptom reporting to nurses in an inpatient bone marrow transplant clinic reduced peak symptom burden and improved individual symptoms during the two weeks post-transplant. A multi-site site trial is warranted to demonstrate the generalizability, efficacy, and value of this intervention

    CIViCpy: A Python software evelopment and analysis toolkit for the CIViC knowledgebase

    Get PDF
    PURPOSE: Precision oncology depends on the matching of tumor variants to relevant knowledge describing the clinical significance of those variants. We recently developed the Clinical Interpretations for Variants in Cancer (CIViC; civicdb.org) crowd-sourced, expert-moderated, and open-access knowledgebase. CIViC provides a structured framework for evaluating genomic variants of various types (eg, fusions, single-nucleotide variants) for their therapeutic, prognostic, predisposing, diagnostic, or functional utility. CIViC has a documented application programming interface for accessing CIViC records: assertions, evidence, variants, and genes. Third-party tools that analyze or access the contents of this knowledgebase programmatically must leverage this application programming interface, often reimplementing redundant functionality in the pursuit of common analysis tasks that are beyond the scope of the CIViC Web application. METHODS: To address this limitation, we developed CIViCpy (civicpy.org), a software development kit for extracting and analyzing the contents of the CIViC knowledgebase. CIViCpy enables users to query CIViC content as dynamic objects in Python. We assess the viability of CIViCpy as a tool for advancing individualized patient care by using it to systematically match CIViC evidence to observed variants in patient cancer samples. RESULTS: We used CIViCpy to evaluate variants from 59,437 sequenced tumors of the American Association for Cancer Research Project GENIE data set. We demonstrate that CIViCpy enables annotation of \u3e 1,200 variants per second, resulting in precise variant matches to CIViC level A (professional guideline) or B (clinical trial) evidence for 38.6% of tumors. CONCLUSION: The clinical interpretation of genomic variants in cancers requires high-throughput tools for interoperability and analysis of variant interpretation knowledge. These needs are met by CIViCpy, a software development kit for downstream applications and rapid analysis. CIViCpy is fully documented, open-source, and available free online

    Animal models of hypertension: a scientific statement from the American Heart Association

    Get PDF
    Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"

    Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection

    Get PDF
    Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A2 (TXA2). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA2 is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA2 accounts for up to 90% of the circulating levels of TXA2 in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA2 receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA2 synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA2 in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA2 may result in novel therapeutic targets for a disease with limited treatment options

    High-speed linear optics quantum computing using active feed-forward

    Get PDF
    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.Comment: 19 pages, 4 figure
    corecore