248 research outputs found

    Escherichia coli bacteriuria in female adults is associated with the development of hypertension

    Get PDF
    AbstractObjectiveTo investigate whether Escherichia coli bacteriuria is associated with the development of hypertension during a long-term follow-up.MethodsA prospective cohort study was performed among the participants of two population-based studies. Between 1974 and 1986 all women aged 39 to 68 years old, who lived in Utrecht, the Netherlands, were invited to participate in a breast cancer screening program. The participants completed a questionnaire, underwent a medical examination, and collected a morning urine sample that remained stored. From 1993 to 1997 another population-based study was performed. We performed a full cohort analysis for 444 women who participated in both studies. E. coli bacteriuria was diagnosed by a real-time PCR. Hypertension was defined as the use of antihypertensive medication and/or a measured systolic blood pressure of at least 160 mmHg or a diastolic blood pressure of 95 mmHg or higher. The mean follow-up was 11.5±1.7 years.ResultsForty women (9%) had E. coli bacteriuria at baseline. Women who had bacteriuria at baseline had a mean blood pressure at study endpoint of 133±20 mmHg systolic and 78±11 mmHg diastolic, and women without bacteriuria had values of 129±20 and 78±11 mmHg, respectively (p-values for difference 0.33 and 0.88). Although E. coli bacteriuria was not associated with the blood pressure as a continuous variable, it was associated with the development of hypertension during follow-up (OR 2.8, 95% CI 1.4–5.5).ConclusionE. coli bacteriuria may increase the risk of future hypertension

    EP-1179: What the gamma? The correlation between QA and clinical risk estimates for prostate RapidArc plans

    Get PDF
    Influenza virus infection can be accompanied by life-threatening immune pathology most likely due to excessive antiviral responses. Inhibitory immune receptors may restrain such overactive immune responses. To study the role of the inhibitory immune receptor CD200R and its ligand CD200 during influenza infection, we challenged wild-type and CD200(-/-) mice with influenza virus. We found that CD200(-/-) mice in comparison to wild-type controls when inoculated with influenza virus developed more severe disease, associated with increased lung infiltration and lung endothelium damage. CD200(-/-) mice did develop adequate adaptive immune responses and were able to control viral load, suggesting that the severe disease was caused by a lack of control of the immune response. Interestingly, development of disease was completely prevented by depletion of T cells before infection, despite dramatically increased viral load, indicating that T cells are essential for the development of disease symptoms. Our data show that lack of CD200-CD200R signaling increases immune pathology during influenza infection, which can be reduced by T cell depletion. The Journal of Immunology, 2009, 183: 1990-1996

    Dopamine transporter in attention-deficit hyperactivity disorder normalizes after cessation of methylphenidate

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder of childhood, which is frequently treated with methylphenidate. The short-term response to treatment with methylphenidate is a substantial decrease in dopamine transporter density, with improvement in neuropsychological tests. In this study, single-photon emission computed tomography was used to investigate possible long-term alterations in the cerebral dopamine system after cessation of treatment with methylphenidate in five children with ADHD. Three months after initiation of treatment with methylphenidate, a reduction of the dopamine transporter in the striatal system was observed. Methylphenidate was administered for a period of 9 to 20 months. Follow-up with single-photon emission computed tomography after withdrawal of methylphenidate medication disclosed an increase of dopamine transporter activity comparable with pretreatment values. The observed upregulation of dopamine transporter activity might support the assumption that methylphenidate does not lead to permanent damage of the nigrostriatal dopaminergic pathways

    Detection of multiple respiratory pathogens during primary respiratory infection: nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction

    Get PDF
    In this study, we present the multiple detection of respiratory viruses in infants during primary respiratory illness, investigate the sensitivity of nasal swabs and nasopharyngeal aspirates, and assess whether patient characteristics and viral load played a role in the sensitivity. Healthy infants were included at signs of first respiratory tract infection. Paired nasopharyngeal aspirates and nasal swabs were collected. Real-time polymerase chain reaction (PCR) was carried out for 11 respiratory pathogens. Paired nasopharyngeal aspirates and nasal swabs were collected in 98 infants. Rhinovirus (n = 67) and respiratory syncytial virus (n = 39) were the most frequently detected. Co-infection occurred in 48% (n = 45) of the infants. The sensitivity of the nasal swab was lower than the nasopharyngeal aspirate, in particular, for respiratory syncytial virus (51% vs. 100%) and rhinovirus (75% vs. 97%). The sensitivity of the nasal swab was strongly determined by the cycle threshold (CT) value (p < 0.001). The sensitivity of the swab for respiratory syncytial virus, but not rhinovirus, was 100% in children with severe symptoms (score ≥11). It is concluded that, for community-based studies and surveillance purposes, the nasal swab can be used, though the sensitivity is lower than the aspirate, in particular, for the detection of mild cases of respiratory syncytial virus (RSV) infection

    Examining the constructs about the supervisor\u27s difficulty scale in supporting the return to work of people with mental health disorders

    Get PDF
    Within the framework of the multidisciplinary RECS project and with the aim of describing the particle flux transfer from the continental shelf to the deep basin, an array of five mooring lines equipped with a total of five pairs of PPS3/3 sequential-sampling sediment traps and RCM-7/8 current meters were deployed 30 m above the bottom from March 2003 to March 2004 inside and outside the Blanes Canyon. One mooring line was located in the upper canyon at 600 m depth, one in the canyon axis at 1700 m depth and other two close to the canyon walls at 900 m depth. A fifth mooring line was deployed in the continental open slope at 1500 m water depth. The highest near-bottomdownwardparticle flux (14.50 g m-2 d-1)wasrecorded at the trap located in the upper canyon (M1), where continental inputs associated with the presence of the Tordera River are most relevant. On the other hand, the downward fluxes (4.35 g m-2 d-1) in the canyon axis (M2) were of the same order as those found in the western flank (M3) of the canyon. Both values were clearly higher than the value (1.95 g m-2 d-1) recorded at the eastern canyon wall (M4). The open slope (M5) mass flux (5.42 mg m-2 d-1) recorded by the sediment trap located outside the canyon system was three orders of magnitude lower than the other values registered by the inner canyon stations. The relevance of our data is that it explains how the transport pathway in the canyon occurs through its western flank, where a more active and persistent current toward the open ocean was recorded over the entire year of the experiment. Off-shelf sediment transport along the canyon axis showed clear differences during the period of the study, with some important events leading to strong intensifications of the current coupled with large transport of particle fluxes to the deepest parts of the canyon. Such events are primarily related to increases in river discharge and the occurrence of strong storms and cascading events during the winter. In summary, in this study it is shown that the dynamics of thewater masses and the currents in the study area convert the sharp western flank of the Blanes Canyon in a more active region that favors erosion processes than the eastern flank, which has a smoother topography and where the absence of erosional conditions yields to steadier sedimentary processes.Peer ReviewedPostprint (published version

    Fungal Invasion of Normally Non-Phagocytic Host Cells

    Get PDF
    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research

    CD200 Receptor Controls Sex-Specific TLR7 Responses to Viral Infection

    Get PDF
    Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200−/− mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R
    corecore