18 research outputs found

    Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast

    Full text link
    Urban emissions remain an underexamined part of the methane budget. Here we present and interpret aircraft observations of six old and leakā€prone major cities along the East Coast of the United States. We use direct observations of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), ethane (C2H6), and their correlations to quantify CH4 emissions and attribute to natural gas. We find the five largest cities emit 0.85 (0.63, 1.12) Tg CH4/year, of which 0.75 (0.49, 1.10) Tg CH4/year is attributed to natural gas. Our estimates, which include all thermogenic methane sources including end use, are more than twice that reported in the most recent gridded EPA inventory, which does not include endā€use emissions. These results highlight that current urban inventory estimates of natural gas emissions are substantially low, either due to underestimates of leakage, lack of inclusion of endā€use emissions, or some combination thereof.Plain Language SummaryRecent efforts to quantify fugitive methane associated with the oil and gas sector, with a particular focus on production, have resulted in significant revisions upward of emission estimates. In comparison, however, there has been limited focus on urban methane emissions. Given the volume of gas distributed and used in cities, urban losses can impact nationalā€level emissions. In this study we use aircraft observations of methane, carbon dioxide, carbon monoxide, and ethane to determine characteristic correlation slopes, enabling quantification of urban methane emissions and attribution to natural gas. We sample nearly 12% of the U.S. population and 4 of the 10 most populous cities, focusing on older, leakā€prone urban centers. Emission estimates are more than twice the total in the U.S. EPA inventory for these regions and are predominantly attributed to fugitive natural gas losses. Current estimates for methane emissions from the natural gas supply chain appear to require revision upward, in part possibly by including endā€use emissions, to account for these urban losses.Key PointsAircraft observations downwind of six major cities along the U.S. East Coast are used to estimate urban methane emissionsObserved urban methane estimates are about twice that reported in the Gridded EPA inventoryMethane emissions from natural gas (including end use) in five cities combined exceeds nationwide emissions estimate from local distributionPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/1/grl59329.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/2/grl59329_am.pd

    Air Pollutant Mapping with a Mobile Laboratory during the BEE-TEX Field Study

    No full text
    The Aerodyne Mobile Laboratory was deployed to the Houston Ship Channel and surrounding areas during the Benzene and Other Toxics Exposure field study in February 2015. We evaluated atmospheric concentrations of volatile organic hydrocarbons and other hazardous air pollutants of importance to human health, including benzene, 1,3-butadiene, toluene, xylenes, ethylbenzenes, styrene, and NO 2 . Ambient concentration measurements were focused on the neighborhoods of Manchester, Harrisburg, and Galena Park. The most likely measured concentration of 1,3-butadiene in the Manchester neighborhood (0.17 ppb) exceeds the Environmental Protection Agency's E-5 lifetime cancer risk level of 0.14 ppb. In all the three neighborhoods, the measured benzene concentration falls below or within the E-5 lifetime cancer risk levels of 0.4ā€“1.4 ppb for benzene. Pollution maps as a function of wind direction show the impact of nearby sources

    Methane Emissions from Natural Gas Infrastructure and Use in the Urban Region of Boston, Massachusetts

    No full text
    Archival datasets associated with with the paper McKain K, et al. (2015), including: continuous atmospheric methane and ethane concentration observations, and inventories of methane emissions by source type and natural gas consumption

    Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    No full text
    The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4), ethane, carbon monoxide (CO), nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS) measured volatile organic compounds (VOC) including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region

    Data from: Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    No full text
    The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4), ethane, carbon monoxide (CO), nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS) measured volatile organic compounds (VOC) including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region

    Atmospheric Emission Characterization of Marcellus Shale Natural Gas Development Sites

    No full text
    Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NO<sub><i>x</i></sub>, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO<sub>2</sub>. CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies
    corecore