14 research outputs found

    Cross-correlation image analysis for real-time particle tracking

    Full text link
    Accurately measuring translations between images is essential in many fields, including biology, medicine, geography, and physics. Existing methods, including the popular FFT-based cross-correlation, are not suitable for real-time analysis, which is especially vital in feedback control systems. To fill this gap, we introduce a new algorithm which approaches shot-noise limited displacement detection and a GPU-based implementation for real-time image analysis.Comment: 4 pages, 3 figures, submitted to Optics Letter

    Assessing small area estimates via artificial populations from KBAABB: a kNN-based approximation to ABB

    Full text link
    Comparing and evaluating small area estimation (SAE) models for a given application is inherently difficult. Typically, we do not have enough data in many areas to check unit-level modeling assumptions or to assess unit-level predictions empirically; and there is no ground truth available for checking area-level estimates. Design-based simulation from artificial populations can help with each of these issues, but only if the artificial populations (a) realistically represent the application at hand and (b) are not built using assumptions that could inherently favor one SAE model over another. In this paper, we borrow ideas from random hot deck, approximate Bayesian bootstrap (ABB), and k nearest neighbor (kNN) imputation methods, which are often used for multiple imputation of missing data. We propose a kNN-based approximation to ABB (KBAABB) for a different purpose: generating an artificial population when rich unit-level auxiliary data is available. We introduce diagnostic checks on the process of building the artificial population itself, and we demonstrate how to use such an artificial population for design-based simulation studies to compare and evaluate SAE models, using real data from the Forest Inventory and Analysis (FIA) program of the US Forest Service. We illustrate how such simulation studies may be disseminated and explored interactively through an online R Shiny application

    Cross-correlation image analysis for real-time particle tracking

    No full text
    Accurately measuring translations between images is essential in many fields, including biology, medicine, geography, and physics. Existing methods, including the popular FFT-based cross-correlation, are not suitable for real-time analysis, which is especially vital in feedback control systems. To fill this gap, we introduce a new algorithm which approaches shot-noise limited displacement detection and a GPU-based implementation for real-time image analysis

    Calcium Antagonists

    No full text

    Angiotensin-Converting Enzyme Inhibitors: A Comparative Review

    No full text

    Mechanisms of Experimental and Human Renovascular Hypertension

    No full text

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    No full text
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∌5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5â€Č ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    No full text
    International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc−3 yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits
    corecore