18 research outputs found

    Heptagon-Containing Nanographene Embedded into [10]Cycloparaphenylene

    Get PDF
    We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes

    Trapped in the prison of the mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh

    Get PDF
    The concept of Trapped Populations has until date mainly referred to people ‘trapped’ in environmentally high-risk rural areas due to economic constraints. This article attempts to widen our understanding of the concept by investigating climate-induced socio-psychological immobility and its link to Internally Displaced People’s (IDPs) wellbeing in a slum of Dhaka. People migrated here due to environmental changes back on Bhola Island and named the settlement Bhola Slum after their home. In this way, many found themselves ‘immobile’ after having been mobile—unable to move back home, and unable to move to other parts of Dhaka, Bangladesh, or beyond. The analysis incorporates the emotional and psychosocial aspects of the diverse immobility states. Mind and emotion are vital to better understand people’s (im)mobility decision-making and wellbeing status. The study applies an innovative and interdisciplinary methodological approach combining Q-methodology and discourse analysis (DA). This mixed-method illustrates a replicable approach to capture the complex state of climate-induced (im)mobility and its interlinkages to people’s wellbeing. People reported facing non-economic losses due to the move, such as identity, honour, sense of belonging and mental health. These psychosocial processes helped explain why some people ended up ‘trapped’ or immobile. The psychosocial constraints paralysed them mentally, as well as geographically. More empirical evidence on how climate change influences people’s wellbeing and mental health will be important to provide us with insights in how to best support vulnerable people having faced climatic impacts, and build more sustainable climate policy frameworks

    Ruthenium nanoparticles canopied by heptagon-containing saddle-shaped nanographenes as efficient aromatic hydrogenation catalysts

    No full text
    The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C = CH2 instead of C O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.European Research Council-H2020 GA 677023Junta de Andalucía P18-FR- 2877Ministerio de Ciencia e Innovación RYC2020-030031-

    Aggregation-Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl-Based Cyclophanes

    No full text
    Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications

    Supramolecular Large Nanosheets Assembled at Air/Water Interfaces and in Solution from Amphiphilic Heptagon-Containing Nanographenes

    No full text
    Embargado hasta 12/12/2024Datos de investigación disponibles en: https://pubs.acs.org/doi/10.1021/acs.joc.3c01854We report the synthesis of a new set of amphiphilic saddle-shaped heptagon-containing polycyclic aromatic hydrocarbons (PAHs) functionalized with tetraethylene glycol chains and their self-assembly into large two-dimensional (2D) polymers. An in-depth analysis of the self-assembly mechanism at the air/water interface has been carried out, and the proposed arrangement models are in good agreement with the molecular dynamics simulations. Quite remarkably, the number and disposition of the tetraethylene glycol chains significantly influence the disposition of the PAHs at the interface and conditionate their packing under pressure. For the three compounds studied, we observed three different behaviors in which the aromatic core is parallel, perpendicular, and tilted with respect to the water surface. We also show that these curved PAHs are able to self-assemble in solution into remarkably large sheets of up to 150 μm2. These results show the relationship, within a family of curved nanographenes, between the monomer configuration and their self-assembly capacity in air/water interfaces and organic–water mixtures

    Involvement of testicular growth factors in fetal Leydig cell aggregation after exposure to phthalate in utero

    No full text
    Exposures to di-(2-ethylhexyl) phthalate (DEHP) have been shown to be associated with decreased adult testosterone (T) levels and increased Leydig cell numbers. As yet, little is known about DEHP effects in utero on fetal Leydig cells (FLC). The present study investigated effects of DEHP on FLC function. Pregnant Long–Evans female rats received vehicle (corn oil) or DEHP at 10, 100, or 750 mg/kg by oral gavage from gestational day (GD)2–20. At GD21, T production, FLC numbers and distribution, and testicular gene expression were examined. The percentage of FLC clusters containing 6–30 cells increased in all treatment groups, with 29 ± 2% in control vs. 37 ± 3, 35 ± 3, and 56 ± 4% in rats receiving 10, 100, and 750 mg/kg DEHP, respectively. In contrast, FLC numbers were 33% and 39% lower than control after exposures to 100 and 750 mg/kg DEHP, respectively. At these doses, mRNA levels of leukemia inhibitory factor (LIF) increased. LIF was found to induce cell aggregation in FLCs in vitro, consistent with the hypothesis that DEHP induced FLC aggregation. Testicular T levels were doubled by the 10 mg/kg dose and halved at 750 mg/kg. The mRNA levels of IGF-1 and c-Kit ligand (KITL) were induced by 10 mg/kg DEHP. These results, taken together, indicate that fetal exposures to DEHP have effects on FLC number, distribution, and most importantly, steroidogenic capacity and suggest that abnormal expressions of IGF1, KITL, and LIF genes may contribute to the reproductive toxicity of phthalates
    corecore