676 research outputs found

    Analysis of Random Number Generators Using Monte Carlo Simulation

    Get PDF
    Revisions are almost entirely in the introduction and conclusion. Results are unchanged, however the comments and recommendations on different generators were changed, and more references were added.Comment: Email: [email protected] 16 pages, Latex with 1 postscript figure. NPAC technical report SCCS-52

    Project for the analysis of technology transfer Annual report, 1969

    Get PDF
    Technology utilization of NASA programs and other research and development programs in Federal Government - project analysis results of technology transfe

    Localization of quantum wave packets

    Full text link
    We study the semiclassical propagation of squeezed Gau{\ss}ian states. We do so by considering the propagation theorem introduced by Combescure and Robert \cite{CR97} approximating the evolution generated by the Weyl-quantization of symbols HH. We examine the particular case when the Hessian H(Xt)H^{\prime\prime}(X_{t}) evaluated at the corresponding solution XtX_{t} of Hamilton's equations of motion is periodic in time. Under this assumption, we show that the width of the wave packet can remain small up to the Ehrenfest time. We also determine conditions for ``classical revivals'' in that case. More generally, we may define recurrences of the initial width. Some of these results include the case of unbounded classical motion. In the classically unstable case we recover an exponential spreading of the wave packet as in \cite{CR97}

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Get PDF
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    On generalized cluster algorithms for frustrated spin models

    Full text link
    Standard Monte Carlo cluster algorithms have proven to be very effective for many different spin models, however they fail for frustrated spin systems. Recently a generalized cluster algorithm was introduced that works extremely well for the fully frustrated Ising model on a square lattice, by placing bonds between sites based on information from plaquettes rather than links of the lattice. Here we study some properties of this algorithm and some variants of it. We introduce a practical methodology for constructing a generalized cluster algorithm for a given spin model, and investigate apply this method to some other frustrated Ising models. We find that such algorithms work well for simple fully frustrated Ising models in two dimensions, but appear to work poorly or not at all for more complex models such as spin glasses.Comment: 34 pages in RevTeX. No figures included. A compressed postscript file for the paper with figures can be obtained via anonymous ftp to minerva.npac.syr.edu in users/paulc/papers/SCCS-527.ps.Z. Syracuse University NPAC technical report SCCS-52

    String Tension from Monopoles in SU(2) Lattice Gauge Theory

    Full text link
    The axis for Figure 2 was wrong. It has been fixed and the postscript file replaced (The file was called comp.ps).Comment: (22 pages latex (revtex); 2 figures appended as postscript files - search for mono.ps and comp.ps. Figures mailed on request--send a note to [email protected]) Preprint ILL-(TH)-94-#1

    Even perturbations of self-similar Vaidya space-time

    Get PDF
    We study even parity metric and matter perturbations of all angular modes in self-similar Vaidya space-time. We focus on the case where the background contains a naked singularity. Initial conditions are imposed describing a finite perturbation emerging from the portion of flat space-time preceding the matter-filled region of space-time. The most general perturbation satisfying the initial conditions is allowed impinge upon the Cauchy horizon (CH), whereat the perturbation remains finite: there is no ``blue-sheet'' instability. However when the perturbation evolves through the CH and onto the second future similarity horizon of the naked singularity, divergence necessarily occurs: this surface is found to be unstable. The analysis is based on the study of individual modes following a Mellin transform of the perturbation. We present an argument that the full perturbation remains finite after resummation of the (possibly infinite number of) modes.Comment: Accepted for publication in Physical Review D, 27 page

    Quantum Effects for the Dirac Field in Reissner-Nordstrom-AdS Black Hole Background

    Full text link
    The behavior of a charged massive Dirac field on a Reissner-Nordstrom-AdS black hole background is investigated. The essential self-adjointness of the Dirac Hamiltonian is studied. Then, an analysis of the discharge problem is carried out in analogy with the standard Reissner-Nordstrom black hole case.Comment: 18 pages, 5 figures, Iop styl

    Slow light in photonic crystals

    Full text link
    The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electromagnetic waves in photonic crystals is quite obvious and well known. The main problem, though, has been how to convert the input radiation into the slow mode without loosing a significant portion of the incident light energy to absorption, reflection, etc. We show that the so-called frozen mode regime offers a unique solution to the above problem. Under the frozen mode regime, the incident light enters the photonic crystal with little reflection and, subsequently, is completely converted into the frozen mode with huge amplitude and almost zero group velocity. The linearity of the above effect allows to slow light regardless of its intensity. An additional advantage of photonic crystals over other methods of slowing down light is that photonic crystals can preserve both time and space coherence of the input electromagnetic wave.Comment: 96 pages, 12 figure
    corecore