896 research outputs found

    Tokamak equilibrium reconstruction code LIUQE and its real time implementation

    Get PDF
    Equilibrium reconstruction consists in identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. The LIUQE code adopts a computationally efficient method to solve this problem, based on an iterative solution of the Poisson equation coupled with a linear parametrisation of the plasma current density. This algorithm is unstable against vertical gross motion of the plasma column for elongated shapes and its application to highly shaped plasmas on TCV requires a particular treatment of this instability. TCV's continuous vacuum vessel has a low resistance designed to enhance passive stabilisation of the vertical position. The eddy currents in the vacuum vessel have a sizeable influence on the equilibrium reconstruction and must be taken into account. A real time version of LIUQE has been implemented on TCV's distributed digital control system with a cycle time shorter than 200 μs for a full spatial grid of 28 by 65, using all 133 experimental measurements and including the flux surface average of quantities necessary for the real time solution of 1.5 D transport equations. This performance was achieved through a thoughtful choice of numerical methods and code optimisation techniques at every step of the algorithm, and was coded in Matlab and Simulink for the off-line and real time version respectively

    Standardization of shape memory alloy test methods toward certification of aerospace applications

    Get PDF
    The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization

    TCV divertor upgrade for alternative magnetic configurations

    Get PDF
    The Swiss Plasma Center (SPC) is planning a divertor upgrade for the TCV tokamak. The upgrade aims at extending the research of conventional and alternative divertor configurations to operational scenarios and divertor regimes of greater relevance for a fusion reactor. The main elements of the upgrade are the installation of an in-vessel structure to form a divertor chamber of variable closure and enhanced diagnostic capabilities, an increase of the pumping capability of the divertor chamber and the addition of new divertor poloidal field coils. The project follows a staged approach and is carried out in parallel with an upgrade of the TCV heating system. First calculations using the EMC3-Eirene code indicate that realistic baffles together with the planned heating upgrade will allow for a significantly higher compression of neutral particles in the divertor, which is a prerequisite to test the power dissipation potential of various divertor configurations

    Helical core tokamak MHD equilibrium states

    Get PDF
    Bifurcated magnetohydrodynamic tokamak equilibrium states with axisymmetric or helical core structure are computed. When a peaked pressure profile is chosen, the helical core structures appear like the {em snakes} that are observed in the JET tokamak. They also have the allure of saturated ideal internal kinks. The existence of a magnetic island is not a requisite condition. Novel equilibrium states that can model the snake are obtained for a JET configuration when the qq-profile has weak reversed magnetic shear with minimum qq values in the range of 0.940.94 to 1.031.03. At the lower end of this qminq_{min} range, the equilibrium {em snake} structure lies radially well inside the domain for which qminleq1q_{min}leq 1. Free boundary equilibria computed for the TCV tokamak develop helical cores when ηN\eta_N exceeds 0.30.3 and have a significant axis excursion for ηNgeq0.4\eta_Ngeq 0.4. At fixed left=1.6%left =1.6\%, the distortion of the magnetic axis is large in the range 0.95leqqminleq1.010.95leq q_{min}leq 1.01. The plasma-vacuum interface is not significantly altered by the internal helical deformations

    Distributed digital real-time control system for the TCV tokamak and its applications

    Get PDF
    A key feature of the new digital plasma control system installed on the TCV (Tokamak à Configuration Variable) tokamak is its possibility to rapidly design, test and deploy real-time algorithms. It accommodates hundreds of diagnostic inputs and actuator outputs, and offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system together with diagnostic triggering signals. It encompasses plasma control applications ranging from basic experiments of coil current and density control to advanced experiments of magnetohydrodynamics (MHD) and plasma profile control. The system consists of multiple nodes, each of which may have a local analog to digital (ADC) and/or digital to analog (DAC) card; all nodes are connected to a reflective memory (RFM), providing a deterministic method of sharing memory between them. Recently, a generalized plasma position and shape controller based on the real-time (RT) Grad-Shafranov solver RTLIUQE was developed and implemented, providing the basis for future high performance plasma operation with advanced plasma configurations. The controller design is based on an isoflux control scheme and utilizes singular value decomposition (SVD), to respect the limits on poloidal field coils currents by limiting the controlled parameters to the set that can be more easily controlled. The controller is capable in principle of providing improved equilibrium control especially for unconventional plasma scenarios, for e.g. reliable control of 'snowflake' equilibria with closely spaced x-points, i.e. the 'exact' snowflake, and the development of negative triangularity plasmas in H-mode. An addition of a new node on the digital control system has enhanced the real time computational capacity and hosts the real-time transport code RAPTOR (rapid plasma transport simulator), an advanced density profile reconstruction algorithm including real-time fringe jump correction, as well as a plasma state monitoring, supervision and actuator management algorithm. In future, more signals from existing TCV diagnostics, including multiview pinhole x-ray diagnostics, Thomson scattering, visible image processing and magnetic signals for MHD mode analysis will be added to expand the capabilities of the digital control system

    Comparison of detachment in Ohmic plasmas with positive and negative triangularity

    Full text link
    Detachment is investigated using core density ramps for lower single null Ohmic L-mode plasmas across a wide range of upper, lower, and total triangularity (δ\delta) in the TCV tokamak. It is universally found that detachment is more difficult to access with negative triangularity (NT) shaping. The outer divertor leg of discharges with δ≈−0.3\delta\approx -0.3 could not be cooled below 5 eV using core density ramps alone. The behavior of the upstream plasma and geometrical divertor effects (e.g. a reduced connection length at negative lower triangularity) do not fully explain the challenges of detaching NT plasmas. Langmuir probe measurements of the target heat flux widths (λq\lambda_q) remained constant within 30% across an upper triangularity scan, while the spreading factor SS was found to be lower by up to 50% in NT, indicating a generally lower integral SOL width. An interesting pattern has been observed in the particle balance where the line-averaged core density was typically higher in NT discharges for a given fuelling rate. Conversely, the divertor neutral pressure and integrated particle content were typically lower for the same line-averaged density. This indicates that NT plasmas may be closer to the sheath-limited regime than their PT counterparts, which could explain why NT is more challenging to detach
    • …
    corecore