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Abstract. Equilibrium reconstruction consists in identifying, from experimental measurements,
a distribution of the plasma current density that satisfies the pressure balance constraint. The
LIUQE code adopts a computationally efficient method to solve this problem, based on an
iterative solution of the Poisson equation coupled with a linear parametrisation of the plasma
current density. This algorithm is unstable against vertical gross motion of the plasma column
for elongated shapes and its application to highly shaped plasmas on TCV requires a particular
treatment of this instability. TCV’s continuous vacuum vessel has a low resistance designed to
enhance passive stabilisation of the vertical position. The eddy currents in the vacuum vessel
have a sizeable influence on the equilibrium reconstruction and must be taken into account. A
real time version of LIUQE has been implemented on TCV’s distributed digital control system
with a cycle time shorter than 200µs for a full spatial grid of 28 by 65, using all 133
experimental measurements and including the flux surface average of quantities necessary for
the real time solution of 1.5D transport equations. This performance was achieved through a
thoughtful choice of numerical methods and code optimisation techniques at every step of the
algorithm, and was coded in MATLAB and SIMULINK for the off-line and real time version
respectively.
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1 Introduction

The need to operate Tokamak plasmas in scenarios optimised for fusion performance by
all available means calls for simultaneous real time control of many parameters. This covers
monitoring of the plasma cross-section shape in view of its role in plasma stability and transport
processes, novel divertor configurations to mitigate the erosion of plasma facing components,
together with temperature, pressure and current profile tailoring, e.g. to maximise the bootstrap
current or sustain internal transport barriers. A crucial component in this control task is the
MHD equilibrium that defines the geometry of the confining magnetic field and of the divertor.
Knowledge of the immediate geometry may be directly used to feedback control the plasma
shape and divertor parameters, and guide the choice of location of heating and current drive. The
situation in TCV is especially challenging. TCV often accommodates a large variety of plasma
shapes, together with various open divertor configurations including single and double null
divertor. This diversity has recently been further extended to high order null points with more
than two divertor legs such as in the so called “snow flake” divertor [1]. In TCV, the vacuum
vessel, and thus the magnetic measurements, may be located far from the plasma boundary and
from the X points, thus complicating shape and divertor control based on flux extrapolation.

Quantities derived from the geometry alone can also serve in other physics based
analysis or prediction real time codes, such as RAPTOR [2], which solves flux surface averaged
1.5D equations for particle and heat transport and for magnetic field resistive diffusion. This
code then estimates the spatial distribution of relevant plasma parameters such as the pressure
and current profiles. A control law based on this parameter estimate may then determine
actuator settings or the future trajectory towards a favoured operational point.

The inverse equilibrium problem consists in identifying an equilibrium satisfying the
MHD pressure balance condition and best matching the available measurements. There are
several proposed approaches to this problem that have been continuously developed during the
last decades; the closest implementation to the LIUQE code [3] used on TCV is EFIT [4]. It is
in essentially based on a parametrisation of the plasma current density by a linear combination
of selected base functions. However TCV poses specific requirements to be fulfilled by LIUQE.
Firstly the highly elongated configurations operated on TCV [5] make the inverse equilibrium
algorithm unstable; so a proper, and computationally efficient, stabilisation method must be
engineered. To increase the passive stabilisation of the vertical position of an elongated
configuration, the vacuum vessel of TCV was designed with low electrical resistivity; the
resulting large image currents in the vacuum vessel have a sizeable influence on the equilibrium
and must be accounted for in the inverse equilibrium reconstruction. LIUQE also has provision,
not reported in the present article, for treating equilibria with more than one magnetic axis, such
as the doublet configuration already created on TCV [6]. Despite these specificities, LIUQE can
be readily implemented on any air cored Tokamak with axisymmetric passive conducting
structures. To that purpose, machine specific code was grouped in dedicated initialisation
blocks, and its interface with the European International Tokamak Modelling Task Force data
structure [7] is under construction.

A real time implementation of the inverse equilibrium reconstruction for TCV imposes
stringent constraints on the computation cycle time. Ignoring, for the present, disruptive and
vertical displacement events, the required cycle time is imposed by the characteristic time
constant of the vacuum vessel image currents and the corresponding response time of the
poloidal field coil power supplies, typically 1ms. Despite a continuous increase in the
computation speed of processors, only a few of the available real time equilibrium
reconstruction codes can approach this figure, by distributing the computation load across
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several processors requiring advanced programming techniques [8] or dedicated hardware [9].
For the real time implementation of LIUQE on TCV, careful attention to the efficiency of
competing numerical techniques in all steps of the algorithm together with an efficient, yet user
friendly, code generation using the SIMULINK programming environment yielded a cycle time
of less that 200µs on a single INTEL processor core. This was achieved using the full spatial grid
and the entire available measurement set, and including flux contour identification and
calculation of flux averaged quantities involved in the 1.5D transport equations.

The path to this achievement is the subject of this article. Section 2 introduces the
background for the inversion equilibrium reconstruction, with a particular emphasis on the
stability of the algorithm with respect to vertical position and the consequences on the
parametrisation of the plasma current density. Section 3 lists the used measurements, cautiously
treating their coupling to the vertical position and the vacuum vessel image currents. Section 4
presents the details of the numerical methods chosen for the steps of the algorithm with, in
particular, a fast fitting method for the plasma current source terms. Finally, the real time
implementation is presented in Section 5, including details of the real time algorithm scheme,
accompanied by a real time dedicated contouring algorithm for mapping the flux surfaces,
permitting the subsequent evaluation of flux surface averaged geometrical quantities, the
hardware, and the applied code optimisation techniques.

2 Inverse equilibrium reconstruction

2.1 Background

In axisymmetric geometry, assuming isotropic pressure and no net fluid velocity, the
equations describing ideal magnetohydrodynamic equilibrium

(1)

can be combined, by writing  in cylindrical coordinates  as

, (2)

into a second order differential Poisson like equation:
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and the definition of the elliptical operator . Here  and  are arbitrary
functions of the poloidal magnetic flux  only. Combining these two equations gives the Grad-
Shafranov equation:

. (5)

The goal of the inverse equilibrium problem is to identify the two functions  and
, together with a flux function , that satisfy equation (5) and that best reproduce

the available experimental measurements of parameters related to the physical quantities behind
these functions.

In the presence of an external - other than the plasma current - toroidal current density,
, equation (3) must be completed as follows:

. (6)

Dirichlet boundary condition must be specified at the boundary of the finite integration domain
. For clarity, the contributions from the plasma current  and the external currents  are

separated:  on  where

(7)

and

. (8)

Here  is the mutual inductance between coaxial circles located at  and
; its calculation is detailed in the Appendix A. The singularity in  when  and
 coincide is avoided as

 on . (9)

Except for trivial functions  and , that are inadequate for realistic equilibrium, and
especially because the plasma is surrounded by a vacuum region whose boundary depends on
the solution itself, equation (5) is intrinsically non linear and calls for dedicated solving
methods. The simplest algorithm, the so called Picard iterations, consists in solving iteratively
equation (6):

(10)

where  labels the iteration number. In the framework of equilibrium reconstruction, the
boundary between the plasma volume and the vacuum is updated at each iteration based on

. The functions  and  forming the plasma current density are also
adjusted at each iteration to best reproduce available experimental measurements, thus
justifying the  index in  in equation (10). The iterative procedure is seeded with an initial
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guess for the current density  obtained from the method presented in Section Fig. 4.
Thus the first step consists in solving equation (10) for  with a known .

2.2 Vertical position stabilisation

It was soon recognised that the Picard iteration scheme is unstable against bulk
displacement of the plasma column, especially in the vertical direction [10]. This can be
demonstrated as follows. Assume that one exact solution for equation (6) is known,  for
a given source function . The corresponding boundary condition can be written

 on  where  is obtained by substituting  for  in equation (7). Now
also assume that at iteration , for some reason related for example to numerical round-off error,
to he approximation of the differential operator or to the evaluation of the boundary condition,
the flux distribution is vertically shifted by ; this modifies the plasma current density that
can be approximated by its first order expansion:

. (11)

In the iteration process, this is used to solve the Poisson equation and update the flux; to wit

(12)

with the boundary conditions obtained with the shifted plasma current distribution and the
contribution from the external current kept constant; this can also be approximated by its first
order expansion:

 on . (13)

The reader can verify that the solution of (12) and (13) is .

The position of the magnetic axis of the exact solution  can be defined as the
position in the plasma where  presents an extremum, i.e.  and ,
where  is the Hessian matrix. The subscript  indicates that the quantity must be evaluated
on . Near this point, a second order Taylor expansion in  and  for  and

 are used to search the magnetic axis vertical position of the updated flux distribution as the
solution of :

. (14)

The quantity  is the horizontal magnetic field, applied with external coils, to elongate the
plasma shape whose sign changes when crossing the equatorial plane. The quantities  and

 are of opposite sign, so the growth factor in equation (14) exceeds one. For a high
elongation equilibrium in TCV, the value is close to 2 and illustrates why the Picard iteration
scheme is vertically unstable.

To counteract this instability, it is argued that the set of measurements used to constrain
the solutions for  and  contain enough information to determine the equilibrium vertical
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position. A vertical shift in the flux distribution introduced by the algorithm can be legitimately
cancelled by adding a free parameter  determined from these measurements and by then
seeking for solutions of the form  and . This approach was also
adopted by both EFIT [11] and the fast version of CLISTE [12].

2.3 Plasma domain

The functions  and  that form the plasma current  must restrict that current to the
confinement region where the magnetic field lines are closed. This is a region of nested flux
surfaces given by contours of the flux distribution  with a flux value decreasing
(increasing)1 from the magnetic axis to the plasma edge. This region is, itself, physically
restricted to the toroidally projected, and therefore axisymmetric, aperture of the device given
by the contour  (see Fig. 1). The most extended closed flux surface thus has a flux
value  equal to the maximum (minimum) flux value along the aperture contour, attained at
point .

Fig. 1 Geometry for the
implementation of LIUQE on TCV
(only the top half is shown, the dash-
dotted line indicates the symmetry
plane): black dots in the poloidal
field coils (not all displayed) show
the coil discretisation in individual
turns (see Section 3.1); black dots
just outside the vacuum vessel show
the ideal position of the flux loops
(see Section 3.2); black rectangles
just inside the vacuum vessel show
the field probe volume (see Section
3.3); dots in the vacuum vessel width
show the vessel current filament
positions, white and black colours
depict the vessel segments (see
Section 3.4); dots on the tile contour
show the position of the discretised
limiter points (see Sections 3.2 and
4.3); the grid is that used for the
Poisson solver (see Section 4.1); the
three circular cross section
conductors in the outer vessel corner
are part of the in vessel coil (see
Section 4.1).

The situation is somewhat more complicated in the presence of one or more so called X
points, defined as positions  where  presents a saddle point, i.e.  and

. Each of these points locally delimits two domains where the flux is larger
(smaller) than . One of these contains the magnetic axis and therefore the plasma. The
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other may contain a subset of the aperture contour so that the point  may not be on the
plasma boundary. To handle this situation, for each X point, two simpler domains are defined,
separated by a line perpendicular to  and including the X point (see Fig. 2). One
of these domains, , contains the magnetic axis and the plasma. One practical
implementation may be written as

. (15)

For more than one simultaneous X point, the plasma is restricted to lie in the, possibly open,
polygon defined by the intersection of all these domains (see Fig. 2):

. (16)

Although this may sometimes be over restrictive, it is suitable for convex plasma shapes. The
search for  is consequently restricted to .

Fig. 2 Sketch of the determination of the domain  (see Section
2.3); A labels the magnetic axis; crosses show the X points; X point
number 4 can be discarded from the potential active X points since it
does not lie on the domain boundary.

The case of a diverted plasma, where the last closed flux surface
contains an X point, must also be considered. This is characterised by
a flux at the X point being larger (smaller) than . For both limited
and diverted cases, the flux value on the last closed flux surface  is
the maximum (minimum) flux value in the set

, explicitly excluding X points outside 
(see Fig. 3). Finally, as stated above, in the confinement region the flux
is larger (smaller) than ; this defines the plasma domain  as the
subset of  where the flux  is larger (smaller) than .

2.4 Source function parametrisation

The MHD equilibrium and the derived Grad-Shafranov equation do not specify the
arbitrary functions  and . The second step of the iterative algorithm for solving the inverse
equilibrium problem consists in identifying such functions that best reproduce the available
measurements. This is performed by first parametrising  and :
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It would then be favourable to restrict the choice of the parametrised functions to linear
combinations of functions  that depend on  only, the coefficients of the linear
combination  becoming the free parameters:

. (18)

Here  for the terms contributing to  and  for those contributing to , and
 is set to 0 outside . This parametrisation, together with a quadratic cost function and

measurements which have a strict - or can be approximated with a - linear relationship with 
and , leads to a linear regression problem, i.e. safe and fast to solve.

Finally, a free vertical shift in the flux distribution to stabilise the algorithm is introduced
(see Section 2.2): . This violates the Grad-Shafranov equation
and can be retained only if the algorithm converges towards a negligible value of . In practise,
it is observed to stay in the 0.1mm range, approaching 1mm only for highly elongated
equilibria. This also destroys the linearity in the free parameters, now the set , calling
for a linearisation to preserve computation efficiency. As a first step, a first order expansion in
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in the new vertical coordinate  and then solve the Poisson equation for the next
iteration in the same domain:

(23)

where  is the external current density shifted in the new vertical
coordinate.

The contribution from the plasma current to the boundary condition is

. (24)

The contribution from the external current requires some care; it may be written as
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this section illustrates how the code may readily be adapted to another Tokamak with a different
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3.1 Active coil currents

The current distribution in the active coils is modelled by dividing each coil in its
individual turns with a filament current of amplitude  flowing at its center (see Fig. 1). The
spacing between turns is 1 to 3cm, providing sufficient precision for the equilibrium
reconstruction.

3.2 Flux loops

A set of 38 flux loops, mounted on the vacuum vessel, measure the poloidal flux (see
Fig. 1). Some of the loops do not follow a toroidally axisymmetric path as they must
circumnavigate the port holes. This is accounted for by using linear combinations of the raw
flux measurements, as explained in [13]. To remove a large net flux from the ohmic transformer,
differences, with respect to a selected reference loop, are preferred. The response to the source
terms, to the active coil currents, , and that to the vessel currents, introduced in Section 3.4,

, are calculated using the mutual inductance formula given in Appendix A for ideal loops
at positions . The contribution from the vertical shift  may be written as

(28)

which can be exactly replaced by

. (29)

This expression is advantageous as it replaces an undesirable calculation of  by an
analytical differentiation of , also explicitly reported in Appendix A.

3.3 Magnetic probes

Two poloidal arrays of 38 magnetic probes each are used for the equilibrium
reconstruction (see Fig. 1). They are located 180° apart toroidally and summed to cancel any
contribution from MHD modes with a toroidal number of 1. The response to the source terms,
to the active coil currents,  and that to the vessel currents,  are calculated using the
magnetic field formulae given in Appendix A with an average over the probe volume, which
improves the accuracy of the response for current sources located near the probe by about 1%.
The contribution from the vertical shift  follows an argument similar to that for the flux loops.

3.4 Vacuum vessel currents

The TCV vacuum vessel has continuous weld resulting in a low toroidal resistance
(45) designed for passive stabilisation of vertical motion of the plasma column. A toroidal
vessel current of 20kA per Volt of loop voltage is induced; this is a sizable fraction of the
plasma current (25kA to 1MA) and its influence on the equilibrium must be accounted for.

The vacuum vessel is made of stainless steel of 15mm thickness in the cylindrical parts
and 20mm at the top and bottom. Port holes in the vessel make its electromagnetic modelling
difficult. Nevertheless, instead of a complicated 3-D representation, a toroidally symmetric
model with an ad hoc spatial distribution of the electrical resistivity to model the port holes was
chosen. Since the vessel thickness is much smaller than the machine dimensions, the current

Ia

Mfa
Mfv

rf zf  z

f z M rf zf r z   zj r z( ) rd zd=

f z zf
M rf zf r z   j r z( ) rd zd=

zj
M

Bma Bmv

z
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density is modelled with a set of  current filaments evenly spaced along the poloidal
perimeter of the vacuum vessel at locations  (see Fig. 1).

This geometrical description of the vessel currents is completed with a voltage equation
for the current filaments , that, without plasma, may be written

. (30)

Here  is the filament resistance and  and  the mutual inductance matrices calculated
with the formulae from Appendix A. The singularity for the case with  is handled using

 where  is the local vessel thickness plus the distance between two
adjacent filaments. This approximation is sufficient because the contribution from the diagonal
elements in  is inversely proportional to the number of filaments.

The basic idea in setting up an observer for the current distribution in the vacuum vessel
is to use the  flux loops distributed on the vacuum vessel to provide a measurement of the
spatial distribution of the inductive voltage applied to the vacuum vessel. The vacuum vessel
current filaments are first grouped in  segments: the current filament  belongs to the
segment  if the corresponding flux loop  is the closest flux loop to this filament (see Fig.
1); with the use of Iverson brackets, this can be cast as elements of a rectangular matrix with

. The proximity of the flux loop  to the current filaments that belong to the
segment  means that the voltage on that flux loop

(31)

is close to the inductive voltage applied to those vessel current filaments, so that their voltage
equation (30) may be written as

. (32)

An estimator is finally obtained for the vessel filament currents:

. (33)

The result holds if the plasma current is taken into account in equations (31) and (32).

The only independent estimators are the total currents in the segments that can be derived
from  as

(34)

with . The inverse relation is derived by combining equations (33) and (34):
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(35)

which can be cast in the elements of a rectangular matrix with  and used to
express the sensitivity of the flux loops to the segment currents, i.e.  and that
of the magnetic probes, .

Note that the time evolution for this estimator of the vessel currents does not necessarily
follow the electromagnetic model of the vacuum vessel contained in equation (30). To improve
this situation an estimator based on a Kálmán filter, as proposed in [14], or an approach
including such a model, similar to that reported in [15], are envisaged.

The effective electrical resistance of each vessel current filament required to estimate
vessel segment currents using equation (33) is experimentally determined as follows [16].
Trapezoidal current waveforms with ramps and flat-top considerably longer than the vessel
characteristic time constant (13ms) are separately applied to each active coil. During the ramps,

 and  are constant and from equation (30) the vessel currents are derived: 

. (36)

The flux and magnetic field measured by the magnetic sensors are

. (37)

The mutual inductance matrices depend only on geometry and are assumed exactly known. The
vessel filament resistance can be deduced from these measurements by solving for , in a
least square sense; the equation set is

. (38)

Each individual equation is multiplied by a weight related to the inverse of the measurement
precision. The differences in the left hand side are readily calculated using the flux and field
measured during the current flat-top, where ,  and . The
available data allows for the determination of only a number of parameters smaller than .
Thus the resistivity distribution along the vessel perimeter is obtained from a linear combination
of  base functions that, effectively, describe the port hole geometry. The
elements of the rectangular matrix  represent the amplitude of the base function  at
filament location ; they are shown in Fig. 3. In the equation set (38),  is first replaced by

, then the equation set solved for , and finally the filament resistance calculated
using , also shown in Fig. 3.
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Fig. 3 Experimentally derived linear
vessel resistivity (bold line) and the base
functions used to derive it (see Section 3.4):
base function(s) for (a) the inner cylinder, (b)
the part of the outer cylinder without ports, (c)
the top row of outer ports, (d) the equatorial
row of outer ports, (e) the bottom row of outer
ports, (f) the top part (7 functions), (g) bottom
part (7 functions). The geometry for the parts
(a) to (e) is simple and constant base functions
are chosen; for parts (f) and (g), the geometry
of the ports is complex and 7 base functions are
used to allow for the resistivity to vary along the
vessel coordinate. The x axis runs clockwise
from the equatorial inner point.

3.5 Plasma current

There is no continuous Rogowski coil
installed around the plasma column, so the total
plasma current is estimated with a discrete
integral based on the  magnetic probe
measurements [13]. Using a trapeze
approximation and a polygonal integration
contour defined by the probe locations

, this estimator may be written in
matricial form ; the formula for
the coefficients  is given in Appendix B.
This estimator is sensitive to  with a factor

 and to  with a factor
. So the final plasma current estimator is corrected for these sensitivities:

. Although this estimator is simply a combination of used
measurements, it is retained as a separate measurement and given an appropriate weight. Its
relation to the plasma current density is trivial:

. (39)

3.6 Diamagnetic flux loop

The diamagnetic flux loop measures the contribution of the plasma to the toroidal flux
integrated over its poloidal cross-section, . A detailed description of the measurement was
given in [17]. This flux can be expressed, using the parametrisation of the magnetic field given
by equation (2) and the value of the vacuum toroidal magnetic field imposed by the
axisymmetry, as

(40)
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where  is the vacuum toroidal field at radius . Since the source function in the Grad-
Shafranov equation is proportional to , the relationship between  and the source terms is
not linear. Writing  where  is a primitive of , with an integration
constant selected to satisfy  outside the plasma, and in the small diamagnetism
approximation where , one can write

. (41)

This approximation introduced in equation (40) and the source function parametrisation (18)
yield a linear response of the diamagnetic flux to the source terms:

(42)

where  is a primitive of  with  outside the plasma. The diamagnetic
measurement, because it is sensitive only to the  function, is effective for disentangling the
known degeneracy between the  and  terms at large aspect ratio.

3.7 Optional measurements

Local measurements of the plasma temperature and density can provide total pressure at
given points . From equation (18) the response of this measurements to the source
terms is . Since they are sensitive only to the  terms, these
measurements are effective, as with the diamagnetic flux, in separating  and  terms,
and in constraining the  profile.

It may be desirable, in some circumstances, to specify the value of the safety factor on
the magnetic axis, . It is shown in Section 4.7 that this is related to the equilibrium and the
central plasma current density:

. (43)

Intrinsically this is non linear in the source function . However it can be made linear in 
by fixing  to its value obtained at the previous Picard iteration.

Information on the flux surface shape is sometimes available from spatially resolved
measurement of the plasma emissivity, typically in the soft X-ray or visible wave length ranges
[18]. If this information is given as a set of points  lying on the same flux surface or on
a specified flux surface , the flux at these points can be evaluated using the mutual
inductance formulae in Appendix A. Then, either the flux difference between each point and
another reference point can be set to 0, or the absolute flux set to .

As reported in [3], LIUQE also has provision to incorporate measurements from Faraday
rotation when they become available.
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4 Algorithm details

4.1 Grid and Poisson solver

The almost rectangular geometry of the TCV vacuum vessel makes the choice of a
rectangular integration domain  straightforward: to satisfy the conditions (9), the boundary is
placed between the vacuum vessel and the tile aperture (see Fig. 1). Although a rectangular grid
perfectly fits the TCV vacuum vessel, it must be emphasised that most of the time the plasma
occupies only a fraction of the grid. To use LIUQE for a D-shaped or circular vacuum vessel,
the rectangular grid must be chosen such that it contains the limiter contour (see Section 2.3); a
similar filling ratio would thus be obtained.

This domain is meshed with  and  points in the  direction and  direction
respectively, with an even spacing  and ; usually for TCV  and . Two
widely used subdomains are defined as that of the boundary points  and the inner grid

 formed by the points not on the domain boundary. External currents falling in  must
be added to the right hand side of the Poisson equation (6). For TCV these are the vessel
filaments in the corners of the vacuum vessel and the 6 turn in-vessel coils (see Fig. 1). These
provide a relatively small contribution to the poloidal flux and can be safely assigned to their
closest mesh points not on the domain boundary. Using the same argument, the vertical shift,
which must be introduced in the same external currents before solving equation (23), is
neglected, as it is much smaller than .

The Poisson equation (6) is written on the computational grid in finite difference form:

(44)

where  and  label the radial and vertical position on the computational grid and where the
coefficients ,  and  are selected between various differentiation methods by their
achieved numerical accuracy [19]:

. (45)

Equation (44) is solved by a direct algorithm [19], using cyclic reduction stabilised with the
Buneman method [20] in the vertical direction, coupled with a tridiagonal matrix inversion in
the radial direction. This method is as fast as the double cyclic reduction algorithm and does not
restrict the number of grid cells in the radial direction to powers of two.

4.2 Boundary condition

The discretisation on the computational grid of the boundary condition for the Poisson
equation as expressed by equations (7) and (8) takes the form:
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. (46)

The calculation of the contribution from the plasma current , with 
consists of a matrix vector multiplication with size 182 by 1638 for TCV. It is computationally
demanding but can be replaced by a method reported in [10]. A surface current  flowing on
the domain boundary  is superimposed onto the plasma current density and is chosen to
cancel the flux at the boundary:

 on 

. (47)

where  is a length coordinate along the contour . The corresponding Poisson equation
becomes

 in , (48)

 on . (49)

The second equation is obtained by Lebesgue integration through , with  the gradient in
the inward direction normal to . The value for  is obtained by solving 
with the boundary condition . Combining equations (47) and (49) yields the
contribution of the plasma current density to the boundary condition:

 on . (50)

The double surface integral has been advantageously replaced by a contour integral, at the cost
of the resolution of a Poisson equation.

In discretising this contour integral, the logarithmic divergence of , when
 and  coincide, must be treated with care; the particularly accurate Weinstein’s

formula [21] is used:

(51)

where  or  is set to zero at the vertical or horizontal boundaries respectively. The normal
gradient is computed using a second order backward or forward finite difference, keeping in
mind that :

(52)
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for the left boundary side, and similarly for the other sides. It is ill defined at the boundary
corners where it is set to zero.

4.3 Identification of the plasma domain

The identification of the plasma domain, as formally introduced in Section 2.3, first
requires the magnetic axis where the flux distribution has an extremum. The discrete flux
function is thus interpolated near each inner grid point with a 6 point interpolation:

(53)

with

. (54)

Then the points where  are sought that satisfy

(55)

with  and  to retain only the points in the grid cells where interpolation is valid.
This interpolation also provides the Hessian matrix used in many of the specific calculations in
the inverse equilibrium code:

. (56)

The magnetic axis is the point where  has an extremum, i.e.  and .
Similarly the X points are those with  and . Since the interpolation on a grid
cell  is not unique and depends on up to four possible central points,
either , ,  or , this procedure may identify
several extrema or saddle points in a single cell. This procedure was chosen because the entire
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mesh must, in any case, be scanned to search for potential X points; keeping the same procedure
for both magnetic axis and X points thus becomes computationally efficient. The first
encountered extremum is kept as the magnetic axis. For the non unique X points, those outside

 are automatically discarded by definition (16) for .

The identification of the plasma domain also requires the value of the flux at the aperture
. This is represented by discrete points  and the discretised flux is interpolated at

those points using a four point interpolation (see Fig. 1).

4.4 Source term fitting

Identifying the free parameters  in the parametrisation of the plasma current
distribution (21) is the second step in the iterative inverse equilibrium problem algorithm. The
most frequent choice for the source term base functions are the three polynomials

 for  and (57)

 for . (58)

This base function set is restricted to only  when the elongation, estimated as the aspect ratio
of the bounding box of , is below a threshold close to 1 and the separation of the  from

 terms becomes increasingly difficult. Other alternatives were occasionally tried, but the
question of the choice of the base functions and their number in relation to the set of available
measurements, and their error and correlation, is not addressed here. The value of these
functions on the inner computational grid is stored in the elements of a rectangular matrix

 so that the expected measurements, using their response describes
in Section 3, may be written:

(59)

where  and . The measurements of the active coil
currents as well as the observer for the vessel currents contain uncertainties and are included in
the fitting procedure as free parameters  and  respectively. This leads to a system of linear
equations:
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(60)

where  is the identity matrix of size . This system is solved in a least square sense, each
equation being given a weight inversely proportional to the associated measurement error. On
TCV, the typical uncertainties are

. (61)

The direct resolution of equation (60), for example by QR factorisation of the implied
matrix, requires considerable computation; for TCV the matrix size is 133 by 60. The conjugate
gradient method was tried but proved to be unstable. The resolution method can take advantage
of the block structure of this matrix; measurements sensitive to both the source terms and the
external currents are grouped in , those only to the source terms in  and those only to the
external currents in ; the free parameters are also grouped in external currents  and source
term parameters . These can be written explicitly:

(62)

A weighted version of equation (60) can then be formed:

(63)
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with

. (64)

The equation system (63) can be separated in two subsystems that can be solved iteratively first
for  and then for , seeding the iteration process with :

. (65)

Typically 12 iterations are sufficient to reach a precision close to one less significant digit. The
explicit solutions for these two equations are

(66)

with  and . Expressions (66) were
optimised for computational load: quantities that do not depend on the equilibrium are enclosed
in square brackets, those to be calculated at each Picard iteration in parenthesis and those
changing at each iteration  marked with a corresponding superscript. The inverse of the 4 by
4 symmetrical positive definite matrix  is computed with an unrolled LDL decomposition
that does not require, unlike the Cholesky decomposition, the slow square root function,
followed by an unrolled forward and back substitution. This method also correctly handles the
case where one or more base functions is not included and the corresponding elements in 
are set to zero.

The computational load in the source term fitting step of the inverse equilibrium problem
is strongly weighted by the calculation of the  matrix in equation (64), because the base
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functions of the source term, and therefore  and , change at every Picard iteration. This
calculation is bypassed in the fast version of CLISTE [12] by independently, and in parallel,
solving the Poisson equations for each base functions to obtain the corresponding flux
distributions; the response of most of the measurements to the base functions is then
approximated by a simple spatial interpolation and differentiation on these flux distributions. In
the case of TCV, and with the achieved computation time in the involved operations (see
Section 5.3), this approach would not yield any advantage and the exact approach is preferred.

Fig. 4 LIUQE equilibrium reconstruction: black dots show
the discretised limiter points; the circle shows the position of the
magnetic axis; the cross shows the position of the active X point;
the closed flux surfaces in black are obtained with the real time
contouring algorithm (see Section 4.7); for comparison the flux
surfaces in grey are obtained with the -toolbox; the open flux
surfaces are drawn using a four point interpolation; the grey
region shows the domain outside  (see Section 2.3); the dash-
dotted rectangle is that used for the initial guess for the plasma
current density (see Section Fig. 4).

4.5 Initial guess for plasma current density

An initial guess for the plasma current density  is
needed to seed the Picard iterations. This is obtained from the
measurements by decomposing the plasma current density into
typically  radially by  to  vertically bilinear
finite elements distributed on a rectangle whose boundaries are set
on the basis of the pre programmed equilibria defined during shot
preparation (see Fig. 4). Storing the value, explicitly given in
Appendix C, of the finite elements on the inner grid points in the
matrix  with the index  spanning the  finite elements
enables the current density to be written as a linear combination
with coefficients :

. (67)

For such a combination, the expected measurements yield a set of equations similar to (60):

(68)

to be similarly solved for . This operation can be cast as a matrix multiplication of the
measurement vector. The matrix, depending only on the geometry, may thus be precalculated.
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The contribution of this plasma current density to the boundary condition is directly calculated
as

(69)

where  is also precalculated.

4.6 Convergence

Iteration convergence is practically reached when the update in the poloidal flux on the
inner grid points normalised by  is below . This usually requires less than 10
iterations.

4.7 Post processing

Post processing are those calculations performed once the Picard iteration process has
converged to an equilibrium given by  and the associated source functions  and

. The most computationally demanding post processing involves determining flux
contours and subsequent integrals along those contours. In particular, flux surface averaged
transport equations involve quantities in the form , and explicitly
require , , ,  and  [2], or the ratios , ,

,  and . One particular application is the calculation of the
safety factor profile, using [22]

. (70)

In the off-line version of LIUQE, these quantities are obtained using the -toolbox [23].
It is based on a bi-cubic spline interpolation of  and invokes the Halley method to
iteratively solve

(71)

for , the distance between the magnetic axis and the contour point at poloidal angle  on the
flux contour level . The definition of a normalised flux coordinate  and relations from [23]
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are used to express  as integrals over  of functions of :

(76)

. (77)

Once the flux contours are known on the computational grid  in the form
, the calculation of integrals (76) and (77) can proceed, setting

 and . Note that the expressions for these integrals use
only  to circumvent the slow square root calculation. The partial derivative with respect to

 and the integration over  are based on a periodic cubic spline interpolation. The partial
derivative with respect to  is based on a cubic spline interpolation, zero and symmetric at

. Note that  is kept in the integral to be combined as a single matrix multiplication with
the derivation operation . For this operation to be sufficiently accurate with only a limited
number of grid points, care must be taken in selecting the point spacing. This is particularly true
near the X points where  is small and equidistant  values result in a large physical
distance between flux contours, and a poor approximation of the  operator. The following
function describes the variation of the normalised flux along a line from the magnetic axis to an
X point, where  is the normalised distance along this line:

. (78)

Thus substituting

(79)

in this function yields a  grid with almost equidistant flux contours near the X points (see Fig.
4). To avoid the undefined quantity  at the X point in , a typical choice for the
outmost contour is . The value for  is selected so that the corresponding contour
spans more than one grid cell, otherwise the interpolation scheme used in the real time
contouring algorithm fails. For smaller value of , and for the magnetic axis where the
integrand of  is undefined, another approach is adopted. In the vicinity of the magnetic
axis, the flux is approximated using a second order Taylor expansion

(80)

which defines elliptical flux contours. The Hessian matrix is diagonalised,
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, (81)

to define a new coordinate system:

(82)

in which the flux function Taylor approximation (80) now becomes

. (83)

With this approximation, the definition of  and the second order Taylor expansion of  in
 one obtains

, (84)

valid for . For almost diagonal , i.e. a small tilt of the elliptical flux
surfaces, this can be approximated by

. (85)

Since the Hessian matrix on the magnetic axis is one of the outputs in the localisation of the
magnetic axis position, this formulation provides a low cost way to estimate the value of 
in the region of the magnetic axis. In particular the central safety factor may be written as

(86)

which, combined with the Poisson equation evaluated on the magnetic axis
, yields

. (87)

The second kind of flux integrals  using the same approximate near the magnetic axis,
varies as .
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5 Real time implementation

5.1 Algorithm

For the real time version of the equilibrium reconstruction LIUQE, a sufficiently short
sampling time is required so that the change in the equilibrium between two successive samples
is small. When realised, the Picard iteration scheme for one sample may be seeded with the
plasma current distribution from the previous sample instead of the approximate initial
distribution from finite element fitting (see Section Fig. 4). The number of iterations then
required to reach a satisfactory convergence of the inverse equilibrium problem is considerably
reduced; push to the extreme, only one iteration is performed and a new measurement set is
employed by the source term fitting at each cycle. This is the approach adopted for the real time
EFIT [11].

For such a scheme to be applicable, the computation time for one Picard iteration must
be reduced until compatible with the evolution time of the equilibrium, typically 1ms for TCV.
This scheme, and the omission of the now unnecessary convergence test, are the only
differences between the real time and the off-line equilibrium reconstruction code LIUQE. A
thorough study of the difference in the results and of the applicability of this approach will be
the subject of a future work.

The post processing step, on which most of the interesting control applications occur and
depend, is also executed at each sample. This step begins with the identification of the flux
contours. The needed computation to perform this identification by solving equation (71) with
a bicubic spline interpolation is too heavy for a real time implementation, that calls for a simpler
interpolation scheme. A real time contouring algorithm was developed that uses a 3 point
interpolation around a grid point  close to the contour point; the contour point 
is then the intersection of the radius through the magnetic axis at angle 

(88)

and the contour at level 

. (89)

The cell for the interpolation is taken as the one containing the contour point at the previous
Picard iteration, or at the previous sample for the real time scheme. This choice is corrected, in
anticipation, for a displacement of the magnetic axis, so that the selected cell contains the point

. (90)

The initial guess  for all values of  is taken as a circle centered on the magnetic
axis with a diameter of 0.8 times the smallest horizontal or vertical width of . Additionally,
the interpolation cell is forced to stay in its  quadrant and is not allowed to move by more than
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one grid cell per iteration. The difference between the contours obtained so and with the bicubic
spline interpolation is at most 5% of the cell size (see Fig. 4).

In practise, the real time iteration scheme is seeded with an initial guess of the plasma
current density, as described in Sections Fig. 4, and flux surface contours, as described in this
section. It is started when the plasma current exceeds a given threshold, set to 25kA for TCV.
Sample after sample, the validity of the equilibrium is tested by many criteria, including the
existence of a magnetic axis and the positivity of the profile of  and . If these fail,
the iteration is restarted with the seeding procedure as explained above.

It is also possible to run off line the real time algorithm with the time reversed, since in
the absence of a dynamic electromagnetic model of the vessel, nothing depends on the
orientation of the time: in this case the equilibrium reconstruction for sample  is seeded with
the current density of the sample . If this procedure is started at a time where the plasma
current is well established, with a sufficient number of iterations at each sample to reach a
converged equilibrium, it allows to extend the equilibrium reconstruction to the early phase of
the plasma current ramp up, with plasma current as low as 10kA on TCV.

5.2 Real time hardware and software

The primary hardware host for the real time version of LIUQE is the distributed digital
control system of TCV [24]. It consists of a network of customised Linux PC nodes; the real
time operating mode is obtained by suspending CPU interrupts and memory paging. All nodes
are connected via a reflective memory network, providing a reliable and deterministic method
for sharing 128Mbytes of data between all nodes without CPU resources including interrupts.
One node is dedicated to the real time LIUQE; it houses no analogue input or output hardware
and takes its data, namely the measurement samples, and sends its results to the control nodes
via the reflective memory network. It is presently based on a single core of an Intel i7 processor,
overclocked, only for the duration of the shot, at 5GHz.

Algorithms running in real time on the TCV digital control system are programmed in
SIMULINK, from which C code is automatically generated and compiled for the target node [25].
This approach offers many advantages. The abstraction from the specific target hardware makes
the algorithm code portable, so that it can be developed and tested with simulated or previously
acquired data, and debugged, profiled and optimised with powerful tools on any computer
running MATLAB and SIMULINK. The code can also readily be shared with other fusion facilities
or imported from collaborating laboratories with only minor adaptations. With the aim of using
that programming language, the FORTRAN version of LIUQE was first fully rewritten to only a
few hundred lines of MATLAB, permitting a straightforward conversion to SIMULINK.

5.3 Code optimisation

After several development iterations, the execution time of one cycle was optimised
below the required 1ms. Each cycle comprises one Picard iteration and the necessary post
processing as presented in Section 4.7 and 5.1, that is the determination of the flux contours and
the evaluation of the contour integrals , , ,  and , the  profile and
some other short calculations. With the present hardware and software, a cycle time less than
200µs was achieved with the full computational grid in , namely 28 by 65, fitting the
source term with 4 parameters using all the 133 scalar measurements available in real time, and
with a post processing grid in  of size 17 by 32. The most time consuming steps are the
calculation of the response matrix  in equation (64) and the Poisson solver. The former
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consists of two inner products with dimension  times  and  times
, and takes about  of the cycle which is very close to the CPU’s theoretical

computational capability. The Poisson solver takes also roughly  of the cycle, but is used
twice, once to update the flux, equation (10), and once in the computation of the boundary
condition, equation (48).

The programming options necessary to reach this performance level are presented
below.

• Parameter values on the computational grid  are stored with  along the columns where
the index varies most rapidly. Because the grid is elongated and has more points in the  axis,
the Poisson solver involves more arithmetic operations in the  direction. This storage
ensures more compact or contiguous indexing. This also facilitates differentiation along 
that appears in many of the steps of the reconstruction procedure.

• Some of the steps require a complex or conditional array indexing that is not easily translated
either in MATLAB or in SIMULINK without using for loops. They pervade the Poisson solver,
the localisation of the magnetic axis and the X points, flagging points inside or outside the
domain , finding the bounding box of  and the efficient evaluation of the source term
base functions for a given  and . For efficiency, they are coded as C functions and
installed as SIMULINK S blocks built with its Legacy Code Tool so that the C code generation
issues efficient calls to these functions.

• All multiplications involving vector or matrix operands are executed by the Intel Math
Kernel Library (MKL). Again they are incorporated in SIMULINK S blocks built with the
Legacy Code Tool, although it may become possible to automate the process by properly
configuring the SIMULINK Embedded Coder with the Code Replacement Library.

• Taking advantage of the parallel computation capability of multi-core processors is also an
option to decrease cycle time. The cyclic reduction scheme in the Poisson solver can be
potentially optimised this way; however the amount of computation in each loop decreases
with the number of possible parallel loops, making the achievable gain marginal. The parallel
version of MKL using Intel Open Multi Processing (IOMP) was also compared with its
sequential version, but here again resulting in only a small gain. This indicates that the
overhead accompanying the additional thread management is not compensated by
parallelisation for the data size involved. Moreover, IOMP turns out to be incompatible with
interrupt suspension used in TCV’s real time system. The pthread pragma is also out of
scope, since instantiation of a thread takes longer than the achieved sequential cycle time. All
code parallelisation has thus been rejected for the time being, in contrast with other real time
equilibrium reconstruction implementations [8][9].

• Code vectorisation using the specific instruction set of the target processor and automatically
generated with the corresponding compiler option (-ax) brought an appreciable and effort
free acceleration of the code. Moreover this vectorisation is eased if all the variables, either
integer or floating point, have the same binary length. This vectorisation is also facilitated by
SIMULINK which generates code with explicit for loop limits.

• All calculations are performed in single precision, 32 bit floating point, as none of the
algorithm steps are unduly dependent on the rounding error. This generates a reduction of
20% in the cycle time. This is attributed to an improved vectorisation by intensively using
Single Instruction Multiple Data registers, and to the smaller data size, which should result
in less frequent cache faults. The overall required memory for variables and parameters is
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about 8Mbytes for the grid sizes given before, that is comparable to the L3 cache of the
processor. Furthermore, limiting the processor to a single CPU core avoided L3 cache
sharing issues.

• As mentioned before, use of mathematical functions like square root are limited to when
strictly necessary. Where possible, multiplication by a precalculated inverse is preferred to
division. Use of infinity and NaNs, defined by the IEEE floating point format, as a result of
undefined mathematical operations, or as a way to mark for example grid values outside ,
is proscribed since it triggers prohibitively slow FPU exceptions.

• The C code generated by the SIMULINK Embedded Coder was also examined for efficiency.
Selector blocks, which, depending on a given condition, output one of their inputs, or
Conditionally executed blocks, which update their outputs only if a given condition is
satisfied, produce proper conditionally executed blocks of C code. The Signal storage reuse
option is also set, that allows for memory buffers allocated to store block input and output
signals to be reused later in the computation flow, thus reducing the required memory for
variables.

6 Conclusions

The equilibrium reconstruction code LIUQE was presented in this article. The adopted
algorithm is based on Picard iterations to solve the Poisson equation coupled with a linear
parametrisation of the plasma current distribution adjusted to reproduce the available
measurements at each iteration. In conclusion, some of the innovations brought in LIUQE and
in its real time implementation are recalled.

It was demonstrated in this article that the Picard iteration algorithm is unstable against
gross motion of the plasma column for elongated plasma shapes but can be stabilised by
allowing for a vertical shift of the flux distribution in the measurement fitting step. Using
algebraic manipulations, this small vertical shift can be introduced in the Poisson equation
resolution without introducing difficulties in interpolating the truncated plasma current density.
This can then be treated as an additional coefficient in the linear parametrisation of the plasma
current density involving only the calculation of the vertical gradient of the smooth poloidal flux
distribution and the analytically precalculated vertical gradient of the Green’s functions. This
stabilisation method is thus numerically sound and its real time implementation proved
straightforward.

Due to the low electrical resistivity of the TCV vacuum vessel, designed to passively
increase the stabilisation the plasma vertical position, large vessel currents are generated which
have a sizeable influence on, and must be accounted for, the reconstructed equilibrium. An
experimentally derived electromagnetic model of the vacuum was developed. It provides an
estimation of the vessel current distribution that is included in the measurement fitting step.

Post processing of a reconstructed equilibrium mainly consists in determining the
geometry of the flux contours and performing integrals along these contours, including the
calculation of the safety factor profile. An adequate formulation for the calculation of the
integrals, together with an appropriate treatment of their, a priori undefined, values near the
magnetic axis and on the last closed flux surface, and a well selected unevenly spaced  grid
were key elements for a successful coupling of the equilibrium reconstruction with the
resolution of the 1.5D flux averaged transport equations already implemented in TCV’s real
time control system. A dedicated contouring algorithm was developed and incorporated in the

p


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real time equilibrium reconstruction to update the flux contour position and the related integrals
at each time sample.

Adjusting the coefficients in the plasma current density parametrisation consists of a
linear regression problem with about 133 measurements and 60 free parameters. Instead of a
direct resolution of this problem, which would be too slow for the real time implementation of
LIUQE, a fast iterative method is used that takes advantage of the block structure of the
involved matrix when the measurements are grouped according to their sensitivity to plasma
current and external currents.

The real time version of LIUQE is coded in SIMULINK, the block programming
environment already adopted to generate the real time code for the whole TCV distributed
digital control system. A cycle time below 200µs was reached on a single core of a processor
overclocked at 5GHz, with the full 28 by 65 spatial grid, all the 133 available measurements
and including post processing on a grid of 17 radial by 32 angular points. This was achieved
with carefully selected numerical techniques, in particular the Poisson solver combines cyclic
reduction and tridiagonal matrix inversion, coded in C for efficiency. Linear algebra is executed
by the Intel Math Kernel Library that was found to be well tuned for the target processor.
Parallelisation was tested but brought only marginal gains because of the relatively small data
size involved that was negated by the increased overheads. Code vectorisation, automatically
generated by the compiler to take benefit of the particular instruction set of the processor,
yielded a substantial, and free, improvement.

Real time LIUQE is currently used as a basis for the development of shape control based
on flux feedback on boundary points, to obtain the safety factor profile that guides real time
stabilisation of MHD or NTM modes with ECH (Electron cyclotron heating), and to feed
RAPTOR with the geometrical quantities involved in 1.5D transport equations to control
current and pressure profiles with ECCD (Electron cyclotron current drive) and ECH.

Appendix A Green’s function calculation

The mutual inductance between two circles located at  and  is evaluated
using the analytical formula involving complete elliptic integrals of first and second kind, 
and  respectively:

(91)

with

. (92)

The magnetic field per unit current at  is evaluated using the analytical formulae:
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(93)

with

. (94)

The field in the poloidal direction  is . The following derivatives are also
used:

. (95)

For discrete points, the following notation is used for any of the above functions :
; for a measurement  averaged over volume , such as the

magnetic probes,

; (96)

for a multiturn winding connected in series  such as the actively driven coils:
.

Appendix B Plasma current estimator

Applying the integral form of Ampère’s law on a polygonal integration contour defined
by the probe locations , and using a trapeze approximation of the integration allows for
an estimator of the plasma current to be written as
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(97)

with , or put in matrix form
 with

. (98)

Appendix C Bilinear finite elements

The  bilinear finite elements used to obtain the initial guess for the plasma current
density (see Section Fig. 4) are defined in a rectangle , and their value is given by

(99)

where , , ,  and the square brackets are
Iverson brackets whose value is  if the enclosed condition is satisfied,  otherwise.
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