1,074 research outputs found

    Employment/Day Options Interface Research Project

    Get PDF

    Anxiety, anticipation and contextual information: a test of attentional control theory

    Get PDF
    We tested the assumptions of Attentional Control Theory (ACT) by examining the impact of anxiety on anticipation using a dynamic, time-constrained task. Moreover, we examined the involvement of high- and low-level cognitive processes in anticipation and how their importance may interact with anxiety. Skilled and less-skilled tennis players anticipated the shots of opponents under low- and high-anxiety conditions. Participants viewed three types of video stimuli, each depicting different levels of contextual information. Performance effectiveness (response accuracy) and processing efficiency (response accuracy divided by corresponding mental effort) were measured. Skilled players recorded higher levels of response accuracy and processing efficiency compared to less-skilled counterparts. Processing efficiency significantly decreased under high- compared to low-anxiety conditions. No difference in response accuracy was observed. When reviewing directional errors, anxiety was most detrimental to performance in the condition conveying only contextual information, suggesting that anxiety may have a greater impact on high-level (top-down) cognitive processes, potentially due to a shift in attentional control. Our findings provide partial support for ACT; anxiety elicited greater decrements in processing efficiency than performance effectiveness, possibly due to predominance of the stimulus-driven attentional system

    Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

    Full text link
    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of scalability and tunability of ultracold atomic systems with the high fidelity operations and detection offered by trapped ion systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian including the atomic band structure and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.Comment: 5 pages + appendi

    Parity Doubling Among the Baryons

    Full text link
    We study the evidence for and possible origins of parity doubling among the baryons. First we explore the experimental evidence, finding a significant signal for parity doubling in the non-strange baryons, but little evidence among strange baryons. Next we discuss potential explanations for this phenomenon. Possibilities include suppression of the violation of the flavor singlet axial symmetry (U(1)AU(1)_{A}) of QCD, which is broken by the triangle anomaly and by quark masses. A conventional Wigner-Weyl realization of the SU(2)LĂ—SU(2)RSU(2)_{L}\times SU(2)_{R} chiral symmetry would also result in parity doubling. However this requires the suppression of families of \emph{chirally invariant} operators by some other dynamical mechanism. In this scenario the parity doubled states should decouple from pions. We discuss other explanations including connections to chiral invariant short distance physics motivated by large NcN_{c} arguments as suggested by Shifman and others, and intrinsic deformation of relatively rigid highly excited hadrons, leading to parity doubling on the leading Regge trajectory. Finally we review the spectroscopic consequences of chiral symmetry using a formalism introduced by Weinberg, and use it to describe two baryons of opposite parity.Comment: 32 pages, 8 figures; v2 revised and expanded; submitted to Phys. Re
    • …
    corecore