287 research outputs found

    Urinary Reflux - the Physician's Dilemma

    Get PDF
    Review of published literature on urinary reflu

    Perineal Abscess Secondary to Gas Gangrene - Use of Hyperbaric Oxygen as a Therapeutic Adjunct in a Case

    Get PDF
    Hyperbaric oxygen treatment of perineal abcess in human male with acute urinary tract difficult

    On the word problem for SP-categories, and the properties of two-way communication

    No full text
    International audienceThe word problem for categories with free products and coproducts (sums), SP-categories, is directly related to the problem of determining the equivalence of certain processes. Indeed, the maps in these categories may be directly interpreted as processes which communicate by two-way channels. The maps of an SP-category may also be viewed as a proof theory for a simple logic with a game theoretic intepretation. The cut-elimination procedure for this logic determines equality only up to certain permuting conversions. As the equality classes under these permuting conversions are finite, it is easy to see that equality between cut-free terms (even in the presence of the additive units) is decidable. Unfortunately, this does not yield a tractable decision algorithm as these equivalence classes can contain exponentially many terms. However, the rather special properties of these free categories -- and, thus, of two-way communication -- allow one to devise a tractable algorithm for equality. We show that, restricted to cut-free terms s,t : X --> A, the decision procedure runs in time polynomial on |X||A|, the product of the sizes of the domain and codomain type

    Histopathological evidence for pulmonary emboli in experimental decompression sickness diagnosed by radioisotopic lung scanning

    Get PDF
    Histopathological evidence for pulmonary emboli in experimental decompression sickness diagnosed by radioisotopic lung scannin

    Co-existence of lipid and gas emboli in experimental decompression sickness

    Get PDF
    Coexistence of lipid and gas emboli in experimental decompression sickness, and lung tissue sectioning data on overcompressed dogs treated with dextran and hepari

    Renal Lymph Oxygen Tension During Graded Renal Ischemia

    Get PDF
    Renal lymph oxygen tension in dogs during graded renal ischemi

    Effect of DLK1 and RTL1 but Not MEG3 or MEG8 on Muscle Gene Expression in Callipyge Lambs

    Get PDF
    Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specificDLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in β-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia

    Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet

    Get PDF
    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet

    Expression of DLK1 and MEG3 genes in porcine tissues during postnatal development

    Get PDF
    The Drosophila-like homolog 1 (DLK1), a transmembrane signal protein similar to other members of the Notch/Delta/Serrate family, regulates the differentiation process in many types of mammalian cells. Callipyge sheep and DLK1 knockout mice are excellent examples of a fundamental role of the gene encoding DLK1 in muscle growth and fat deposition. DLK1 is located within co-regulated imprinted clusters (the DLK1/DIO3 domain), along with other imprinted genes. Some of these, e.g. the RNA coding MEG3 gene, presumedly interfere with DLK1 transcription. The aim of our study was to analyze DLK1 and MEG3 gene expression in porcine tissues (muscle, liver, kidney, heart, brain stem) during postnatal development. The highest expression of both DLK1 and MEG3 variant 1 (MEG3 var.1) was observed in the brain-stem and muscles, whereas that of MEG3 variant 2 (MEG3var.2) was the most abundant in muscles and the heart. During development (between 60 and 210 days of age) expression of analyzed genes was down-regulated in all the tissues. An exception was the brain- stem, where there was no significant change in MEG3 (both variants) mRNA level, and relatively little decline (2-fold) in that of DLK1 transcription. This may indicate a distinct function of the DLK1 gene in the brain-stem, when compared with other tissues
    • …
    corecore