211 research outputs found
Properties of the redshift
Central to any analysis of dynamical systems, or large scale motion, is the interpretation of redshifts of galaxies as classical Doppler velocity shifts. This is a testable assumption and for many years evidence has accumulated that is inconsistent with the assumption. Here, the authors review recent evidence suggesting systematic radial dependence and temporal variation of redshifts
Unpulsed UBV Optical Emission from the Crab Pulsar
Based on observations of the Crab pulsar using the TRIFFID high speed imaging
photometer in the UBV bands using the Special Astrophysical Observatory's 6m
telescope in the Russian Caucasus, we report the detection of pronounced
emission during the so-called `off' phase of emission. Following de-extinction,
this unpulsed component of emission is shown to be consistent with a power law
with an exponent of alpha = -0.60 +/- 0.37, the uncertainty being dominated by
the error associated with the independent CCD photometry used to reference the
TRIFFID data. This suggests a steeper power law form than that reported
elsewhere in the literature for the total integrated spectrum, which is
essentially flat with alpha ~ 0.1, although the difference in this case is only
significant at the ~ 2 sigma level. Deeper reference integrated and TRIFFID
phase-resolved photometry in these bands in conjunction with further
observations in the UV and R region would constrain this fit further.Comment: 26 pages, 2 figures, uses aasms4.sty, accepted for publication in the
Astrophysical Journa
On the investigations of galaxy redshift periodicity
In this article we present a historical review of study of the redshift
periodicity of galaxies, starting from the first works performed in the
seventies of the twentieth century until the present day. We discuss the
observational data and methods used, showing in which cases the discretization
of redshifts was observed. We conclude that galaxy redshift periodisation is an
effect which can really exist. We also discussed the redshift discretization in
two different structures: the Local Group of galaxies and the Hercules
Supercluster. Contrary to the previous studies we consider all galaxies which
can be regarded as a structure member disregarding the accuracy of velocity
measurements. We applied the power spectrum analysis using the Hann function
for weighting, together with the jackknife error estimator. In both the
structures we found weak effects of redshift periodisation.Comment: 10 pages, 4 figures, to be published in Part. and Nucl. Lett. 200
The Optical Polarisation of the Vela Pulsar revisited
In this work we present a revised measurement of the phase-averaged optical
polarisation of the Vela pulsar (PSR B0833-45), for which only one value has
been published so far (Wagner & Seifert 2000). Our measurement has been
obtained through an accurate reanalysis of archival polarisation observations
obtained with the FORS instrument at the VLT. We have measured a phase-averaged
linear polarisation degree P=9.4% +/- 4% and a position angle 146 +/- 11 deg,
very close to the ones of the axis of symmetry of the X-ray arcs and jets
detected by Chandra and of the pulsar proper motion.We have compared the
measured phase-averaged optical polarisation with the expectations of different
pulsars' magnetosphere models. We have found that all models consistently
predict too large values of the phase-averaged linear polarization with respect
to the observed one. This is probably a consequence of present models'
limitations which neglect the contributions of various depolarisation effects.
Interestingly, for the outer gap model we have found that, assuming synchrotron
radiation for the optical emission, the observed polarisation position angle
also implies an alignment between the pulsar rotational axis and the axis of
symmetry of the X-ray arcs and jets.Comment: 8 pages, 4 figure
Generalisation of the Einstein-Straus model to anisotropic settings
We study the possibility of generalising the Einstein--Straus model to
anisotropic settings, by considering the matching of locally cylindrically
symmetric static regions to the set of on locally rotationally
symmetric (LRS) spacetimes. We show that such matchings preserving the symmetry
are only possible for a restricted subset of the LRS models in which there is
no evolution in one spacelike direction. These results are applied to spatially
homogeneous (Bianchi) exteriors where the static part represents a finite
bounded interior region without holes. We find that it is impossible to embed
finite static strings or other locally cylindrically symmetric static objects
(such as bottle or coin-shaped objects) in reasonable Bianchi cosmological
models, irrespective of the matter content. Furthermore, we find that if the
exterior spacetime is assumed to have a perfect fluid source satisfying the
dominant energy condition, then only a very particular family of LRS stiff
fluid solutions are compatible with this model.
Finally, given the interior/exterior duality in the matching procedure, our
results have the interesting consequence that the Oppenheimer-Snyder model of
collapse cannot be generalised to such anisotropic cases.Comment: LaTeX, 24 pages. Text unchanged. Labels removed from the equations.
Submitted for publicatio
Thermodynamics of a black hole in a cavity
We present a unified thermodynamical description of the configurations
consisting on self-gravitating radiation with or without a black hole. We
compute the thermal fluctuations and evaluate where will they induce a
transition from metastable configurations towards stable ones. We show that the
probability of finding such a transition is exponentially small. This indicates
that, in a sequence of quasi equilibrium configurations, the system will remain
in the metastable states till it approaches very closely the critical point
beyond which no metastable configuration exists. Near that point, we relate the
divergence of the local temperature fluctuations to the approach of the
instability of the whole system, thereby generalizing the usual fluctuations
analysis in the cases where long range forces are present. When angular
momentum is added to the cavity, the above picture is slightly modified.
Nevertheless, at high angular momentum, the black hole loses most of its mass
before it reaches the critical point at which it evaporates completely.Comment: 27 pages, latex file, contains 3 figures available on request at
[email protected]
Twenty Years of Galactic Observations in Searching for Bursts of Collapse Neutrinos with the Baksan Underground Scintillation Telescope
The results of twenty-year-long Galactic observations in neutrino radiation
are summarized. Except for the recording of a neutrino signal from the
supernova SN 1987A, no Galactic bursts of collapse neutrinos have been
detected. An upper bound on the mean frequency of gravitational collapses in
our Galaxy was obtained, .Comment: latex, 7 pages, 2 eps figure
A model of nonlinear evolution and saturation of the turbulent MHD dynamo
The growth and saturation of magnetic field in conducting turbulent media
with large magnetic Prandtl numbers are investigated. This regime is very
common in low-density hot astrophysical plasmas. During the early (kinematic)
stage, weak magnetic fluctuations grow exponentially and concentrate at the
resistive scale, which lies far below the hydrodynamic viscous scale. The
evolution becomes nonlinear when the magnetic energy is comparable to the
kinetic energy of the viscous-scale eddies. A physical picture of the ensuing
nonlinear evolution of the MHD dynamo is proposed. Phenomenological
considerations are supplemented with a simple Fokker--Planck model of the
nonlinear evolution of the magnetic-energy spectrum. It is found that, while
the shift of the bulk of the magnetic energy from the subviscous scales to the
velocity scales may be possible, it occurs very slowly -- at the resistive,
rather than dynamical, time scale (for galaxies, this means that generation of
large-scale magnetic fields cannot be explained by this mechanism). The role of
Alfvenic motions and the implications for the fully developed isotropic MHD
turbulence are discussed.Comment: IOP latex, 19 pages, 6 figures; final published versio
Particles and fields in fluid turbulence
The understanding of fluid turbulence has considerably progressed in recent
years. The application of the methods of statistical mechanics to the
description of the motion of fluid particles, i.e. to the Lagrangian dynamics,
has led to a new quantitative theory of intermittency in turbulent transport.
The first analytical description of anomalous scaling laws in turbulence has
been obtained. The underlying physical mechanism reveals the role of
statistical integrals of motion in non-equilibrium systems. For turbulent
transport, the statistical conservation laws are hidden in the evolution of
groups of fluid particles and arise from the competition between the expansion
of a group and the change of its geometry. By breaking the scale-invariance
symmetry, the statistically conserved quantities lead to the observed anomalous
scaling of transported fields. Lagrangian methods also shed new light on some
practical issues, such as mixing and turbulent magnetic dynamo.Comment: 165 pages, review article for Rev. Mod. Phy
Semantic Tagging of Mathematical Expressions
Semantic tagging of mathematical expressions (STME) gives semantic meanings to tokens in mathematical expressions. In this work, we propose a novel STME approach that relies on neither text along with expressions, nor labelled train-ing data. Instead, our method only requires a mathemati-cal grammar set. We point out that, besides the grammar of mathematics, the special property of variables and user habits of writing expressions help us understand the im-plicit intents of the user. We build a system that considers both restrictions from the grammar and variable properties, and then apply an unsupervised method to our probabilis-tic model to learn the user habits. To evaluate our system, we build large-scale training and test datasets automatically from a public math forum. The results demonstrate the significant improvement of our method, compared to the maximum-frequency baseline. We also create statistics to reveal the properties of mathematics language
- …