6 research outputs found

    The fluctuating resource hypothesis explains invasibility, but not exotic advantage following disturbance

    Get PDF
    Invasibility is a key indicator of community susceptibility to changes in structure and function. The fluctuating resource hypothesis (FRH) postulates that invasibility is an emergent community property, a manifestation of multiple processes that cannot be reliably predicted by individual community attributes like diversity or productivity. Yet, research has emphasized the role of these individual attributes, with the expectation that diversity should deter invasibility and productivity enhance it. In an effort to explore how these and other factors may influence invasibility, we evaluated the relationship between invasibility and species richness, productivity, resource availability, and resilience in experiments crossing disturbance with exotic seed addition in 1-m2 plots replicated over large expanses of grasslands in Montana, USA and La Pampa, Argentina. Disturbance increased invasibility as predicted by FRH, but grasslands were more invasible in Montana than La Pampa whether disturbed or not, despite Montana´s higher species richness and lower productivity. Moreover, invasibility correlated positively with nitrogen availability and negatively with native plant cover. These patterns suggested that resource availability and the ability of the community to recover from disturbance (resilience) better predicted invasibility than either species richness or productivity, consistent with predictions from FRH. However, in ambient, unseeded plots in Montana, disturbance reduced native cover by >50% while increasing exotic cover >200%. This provenance bias could not be explained by FRH, which predicts that colonization processes act on species? traits independent of origins. The high invasibility of Montana grasslands following disturbance was associated with a strong shift from perennial to annual species, as predicted by succession theory. However, this shift was driven primarily by exotic annuals, which were more strongly represented than perennials in local exotic vs. native species pools. We attribute this provenance bias to extrinsic biogeographic factors such as disparate evolutionary histories and/or introduction filters selecting for traits that favor exotics following disturbance. Our results suggest that (1) invasibility is an emergent property best explained by a community´s efficiency in utilizing resources, as predicted by FRH but (2) understanding provenance biases in biological invasions requires moving beyond FRH to incorporate extrinsic biogeographic factors that may favor exotics in community assembly.Fil: Pearson, Dean. United State Forest Service; Estados Unidos. University of Montana; Estados UnidosFil: Ortega, Yvette K.. United State Forest Service; Estados UnidosFil: Villarreal, Diego. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lekberg, Ylva. University of Montana; Estados UnidosFil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Eren, Ozkan. Adnan Menderes Universitesi; TurquíaFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentin

    Native weed protects species that sustain cattle raising in semi-arid natural grasslands

    No full text
    Facilitation may contribute to conserving natural systems disturbed by humans. We hypothesized that the unpalatable native weed, Baccharis ulicina (Baccharis) protects palatable plants from cattle grazing in central Argentina grasslands. We tested this hypothesis through observational and experimental studies. In the observational study, we compared consumption and performance of plants growing in Baccharis and Baccharis-free (open) microsites. We also recorded photosynthetically active radiation, soil moisture, and total soil nitrogen (N) in both microsites. In the experiment, we removed Baccharis aboveground biomass and compared herbivory and plant performance in Baccharis, Baccharis-removed, and open microsites. Palatable plants were less consumed when growing with than without Baccharis, and palatable grasses with the highest forage values were more abundant, taller, and fecund in Baccharis than open microsites in our observational study. Additionally, except for increased radiation in the open, there were no differences in abiotic variables between microsites. Results from the plant removal experiment were consistent with those from the observational study and did not offer evidence for direct facilitation. We conclude that protection from cattle is an important mechanism through which Baccharis benefits neighboring plants. Our work emphasizes the need to recognize the facilitative role of weeds in the management of semi-arid grasslands.Fil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentin

    Herbivore-mediated facilitation alters composition and increases richness and diversity in ruderal communities

    Get PDF
    Little is known about positive interactions among members of herbaceous plant communities initiating secondary succession (i.e., ruderal communities). Here, we explored the possibility that Euphorbia schickendantzii (Euphorbia), a latex-containing herb, facilitates other ruderals by protecting them from herbivores in recently plowed and overgrazed sites in central Argentina. To test this hypothesis, we compared plant number, height, reproductive output, and herbivore damage for four species when associated with Euphorbia versus in adjacent open zones without Euphorbia. Additionally, we classified species in the community according to their palatability, and compared community composition, richness, and diversity between Euphorbia and open zones. Dominant (66 % relative abundance) and highly palatable species exhibited increased plant number, size, and fecundity, and decreased herbivory when associated with Euphorbia relative to non-Euphorbia zones. In contrast, a physically and chemically well-defended species showed greater number of individuals in the open and no differences in herbivory between sampling zones. In detrended correspondence analysis, ordination scores of most palatable species were closer to Euphorbia, while those of most unpalatable species were closer to the open. Community composition differed between areas, with six species (25 % of the community) occurring exclusively with Euphorbia and three other species occurring only in open zones. Additionally, richness and diversity were greater in communities associated with Euphorbia than in those associated with non-Euphorbia zones. These results support our hypothesis, highlight the importance of facilitation in altering community-level responses, and indicate that positive interactions can play a more significant role in organizing terrestrial ruderal communities than previously recognized.Fil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentin

    Plant interactions balance under biotic and abiotic stressors: The importance of herbivory in semi-arid ecosystems

    No full text
    Biotic and abiotic stressors commonly co-occur in plant communities and influence interactions between plants. However, their combined effects on plant interactions have not been widely studied and are still unclear. Here, we assessed the balance of interactions between neighboring plants along a grazing gradient and under two water regimes. We conducted a three-year-field experiment in semi-arid central Argentina with transplants of the dominant palatable grass Piptochaetium napostaense growing in Baccharis ulicina and open microsites across a gradient of grazing pressure. Additionally, we established a water addition treatment along that gradient. We recorded herbivory, size, and fecundity of P. napostaense. During the first two years, P. napostaense was consumed less and was larger below Baccharis than in the open. These differences were greatest under high grazing pressure. Differences in fecundity between microsites were only detected under high and medium grazing pressure in the first two years. In the third year, Baccharis lost their leaves for unclear reasons and provided poor herbivory protection; hence, P. napostaense plants in Baccharis were larger than those in the open only under medium and low grazing pressure, and there were no differences in fecundity between microsites under any grazing condition. Water additions exerted no effect on plant interactions. The balance of interactions changed from positive under heavy grazing to neutral at low and no grazing and water availability did not alter that balance. We conclude that herbivore pressure is an important driver of the balance of plant interactions in semi-arid environments.Fil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Biológicas; ArgentinaFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Biológicas; Argentin

    Response of native and non-native ruderals to natural and human disturbance

    No full text
    The ruderal strategy is widely shared among non-native plants, providing a general explanation for the commonly observed positive effects of disturbance on invasions. How native ruderals respond to disturbance and how their abundance compares to that of non-native ruderals remains, however, poorly understood. Similarly, little is known about the role that disturbance type plays in the coexistence between native and non-native ruderals. We proposed that natural disturbance favors native over non-native ruderals, whereas novel anthropogenic disturbance favors non-natives over natives. To assess our general hypothesis, we conducted extensive field samplings in which we measured relative abundance, richness, and diversity of native and non-native ruderals in sites with natural and anthropogenic disturbance in central Argentina, a system where the ruderal strategy is common to a large number of native and non-native species. We found that natives dominated ruderal communities growing in recently burned grasslands, whereas non-natives dominated in roadsides. Additionally, the richness and diversity of native ruderal species were much greater than those of non-natives in sites with fire and in sites with grazing, but species richness and diversity did not differ between groups in roadsides. Because vegetation evolved with fire in our system and, in contrast, the construction and maintenance of roads is recent in it, these results support our hypothesis. Our work indicates that the ruderal strategy does not seem to suffice to explain why disturbance facilitates invasions. According to our data, species origin interacts with disturbance type to determine dominance in communities with coexisting native and non-native ruderals.Fil: Chiuffo, Mariana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Prina, Anibal Oscar. Universidad Nacional de La Pampa. Facultad de Agronomía; ArgentinaFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentin

    Non-native weed reaches community dominance under the canopy of dominant native tree

    No full text
    Whether facilitation from native plants is strong enough to trigger community dominance by non-natives remains unclear. We explored the possibility that facilitation from Prosopis caldenia, the dominant native tree in the semiarid open forest of central Argentina, drives local community dominance by Chenopodium album, an annual herb native to Europe. We assessed this hypothesis by conducting extensive field sampling in which we recorded the relative abundance of species growing under the canopy of P. caldenia (caldén microsites) and in adjacent locations free of this tree (open microsites). If our hypothesis is correct, then the relative abundance of C. album will be greater than that of the rest of the species only when growing under P. caldenia. Also, we measured C. album performance, estimated its soil seed bank, and characterized growing conditions in caldén and open microsites. We found that the relative abundance of C. album was over seven times greater than that of any other species in communities occurring in caldén microsites; by contrast, C. album co-dominated communities with several other species in the open. Chenopodium album density, cover, biomass, and fecundity were all several times greater in caldén than open microsites. Similarly, C. album seed bank displayed an eight-fold increase in caldén as compared to open microsites. Growing conditions were markedly different between microsites, which could explain positive responses from C. album. Our results suggest that facilitation from natives is indeed strong enough to trigger local community dominance by non-natives, advancing the understanding of community-level consequences of this interaction.Fil: Estanga Mollica, María Eugenia. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Naturales; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Recursos Naturales; ArgentinaFil: Schmidt, Romina M.. Gobierno de la Provincia de La Pampa. Ministerio de Seguridad; ArgentinaFil: Cock, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentin
    corecore