152 research outputs found

    Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully-convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multi-wavelength RVs of four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory (LCO) network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly-rotating M stars frequently remains coherent for hundreds of stellar rotations, and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa

    ULTRA-SHORT-PERIOD PLANETS IN K2 WITH COMPANIONS: A DOUBLE TRANSITING SYSTEM FOR EPIC 220674823

    Get PDF
    Two transiting planets have been identified orbiting K2 target EPIC 220674823. One object is an ultra-short-period planet (USP) with a period of just 0.57 days (13.7 hr), while the other has a period of 13.3 days. Both planets are small, with the former having a radius of R_(p1) = 1.5 R⊕ and the latter R_(p2) = 2.5 R⊕. Follow-up observations, including radial velocity (with uncertainties of 110 m s−1) and high-resolution adaptive optics imagery, show no signs of stellar companions. EPIC 220674823 is the 12th confirmed or validated planetary system in which a USP (i.e., having an orbital period less than 1 day) is accompanied by at least one additional planet, suggesting that such systems may be common and must be accounted for in models for the formation and evolution of such extreme systems

    Food-Web Models Predict Species Abundances in Response to Habitat Change

    Get PDF
    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss

    An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 100 (2006): 213-233, doi:10.1016/j.marchem.2005.10.013.Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C/234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C/234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C/234Th either increases or is relatively invariant with increasing particle size (size classes >1 to 100’s μm). Observations also suggest that C/234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C/234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C/234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation and U.S. Department of Energy. S.F. and J.C.M. acknowledge the support provided to the International Atomic Energy Agency (IAEA) Marine Environment Laboratory by the Government of the Principality of Monaco. T.T. acknowledges support from the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    Persistent Starspot Signals on M Dwarfs: Multiwavelength Doppler Observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multiwavelength RVs of four rapidly rotating M dwarfs (AD Leo, G227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly rotating M stars frequently remains coherent for hundreds of stellar rotations and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets

    An Early Cambrian Rift to Post-Rift Transition in the Cordillera of Western North America

    Get PDF
    The upper Proterozoic and lower Palaeozoic wedge of miogeoclinal strata in the North American Cordillera is widely regarded as evidence for a proto-Pacific passive margin. The rifting history of this margin appears to have been protracted, possibly spanning more than 200 Myr in a tectonic setting that is not well understood. Quantitative subsidence analyses of lower Palaeozoic strata between British Columbia and Utah, however, provide indirect evidence that the transition from rifting to post-rift cooling occurred within a relatively short interval of time, although probably not synchronously, between 600 and 555 Myr. This age is significantly younger than that implied in previous studies. We describe here new field data, which, together with published geological data, provide direct evidence of a latest Proterozoic or early Cambrian age for the rift to post-rift transition. The data support recent arguments for widespread initiation of passive margins around the edge of the North American craton close to the Cambrian-Precambrian boundary

    Ultra-short-period Planets in K2 with Companions: A Double Transiting System for EPIC 220674823

    Get PDF
    Two transiting planets have been identified orbiting K2 target EPIC 220674823. One object is an ultra-short-period planet (USP) with a period of just 0.57 days (13.7 hr), while the other has a period of 13.3 days. Both planets are small, with the former having a radius of R_(p1) = 1.5 R⊕ and the latter R_(p2) = 2.5 R⊕. Follow-up observations, including radial velocity (with uncertainties of 110 m s−1) and high-resolution adaptive optics imagery, show no signs of stellar companions. EPIC 220674823 is the 12th confirmed or validated planetary system in which a USP (i.e., having an orbital period less than 1 day) is accompanied by at least one additional planet, suggesting that such systems may be common and must be accounted for in models for the formation and evolution of such extreme systems

    A neurodegenerative disease landscape of rare mutations in Colombia due to founder effects

    Get PDF
    Background The Colombian population, as well as those in other Latin American regions, arose from a recent tri-continental admixture among Native Americans, Spanish invaders, and enslaved Africans, all of whom passed through a population bottleneck due to widespread infectious diseases that left small isolated local settlements. As a result, the current population reflects multiple founder effects derived from diverse ancestries. Methods We characterized the role of admixture and founder effects on the origination of the mutational landscape that led to neurodegenerative disorders under these historical circumstances. Genomes from 900 Colombian individuals with Alzheimer’s disease (AD) [n = 376], frontotemporal lobar degeneration-motor neuron disease continuum (FTLD-MND) [n = 197], early-onset dementia not otherwise specified (EOD) [n = 73], and healthy participants [n = 254] were analyzed. We examined their global and local ancestry proportions and screened this cohort for deleterious variants in disease-causing and risk-conferring genes. Results We identified 21 pathogenic variants in AD-FTLD related genes, and PSEN1 harbored the majority (11 pathogenic variants). Variants were identified from all three continental ancestries. TREM2 heterozygous and homozygous variants were the most common among AD risk genes (102 carriers), a point of interest because the disease risk conferred by these variants differed according to ancestry. Several gene variants that have a known association with MND in European populations had FTLD phenotypes on a Native American haplotype. Consistent with founder effects, identity by descent among carriers of the same variant was frequent. Conclusions Colombian demography with multiple mini-bottlenecks probably enhanced the detection of founder events and left a proportionally higher frequency of rare variants derived from the ancestral populations. These findings demonstrate the role of genomically defined ancestry in phenotypic disease expression, a phenotypic range of different rare mutations in the same gene, and further emphasize the importance of inclusiveness in genetic studies.Q2Q2Antecedentes La población colombiana, así como la de otras regiones latinoamericanas, surgió de una mezcla tricontinental reciente entre los nativos americanos, los invasores españoles y los africanos esclavizados, todos los cuales pasaron por un cuello de botella poblacional debido a enfermedades infecciosas generalizadas que dejaron a pequeños aislados. asentamientos locales. Como resultado, la población actual refleja múltiples efectos fundadores derivados de diversas ascendencias. Métodos Caracterizamos el papel de la mezcla y los efectos fundadores en el origen del paisaje mutacional que condujo a trastornos neurodegenerativos en estas circunstancias históricas. Genomas de 900 individuos colombianos con enfermedad de Alzheimer (EA) [n = 376], continuo degeneración lobar frontotemporal-enfermedad de la motoneurona (FTLD-MND) [n = 197], demencia de inicio temprano no especificada (EOD) [n = 73 ], y participantes sanos [n = 254] fueron analizados. Examinamos sus proporciones de ascendencia global y local y examinamos esta cohorte en busca de variantes nocivas en los genes que causan enfermedades y confieren riesgos. Resultados Identificamos 21 variantes patogénicas en genes relacionados con AD-FTLD, y PSEN1 albergaba la mayoría (11 variantes patogénicas). Se identificaron variantes de las tres ascendencias continentales. Las variantes heterocigotas y homocigotas de TREM2 fueron las más comunes entre los genes de riesgo de EA (102 portadores), un punto de interés porque el riesgo de enfermedad conferido por estas variantes difería según la ascendencia. Varias variantes genéticas que tienen una asociación conocida con MND en poblaciones europeas tenían fenotipos FTLD en un haplotipo nativo americano. De acuerdo con los efectos del fundador, la identidad por descendencia entre portadores de la misma variante fue frecuente. Conclusiones La demografía colombiana con múltiples mini-cuellos de botella probablemente mejoró la detección de eventos fundadores y dejó una frecuencia proporcionalmente más alta de variantes raras derivadas de las poblaciones ancestrales. Estos hallazgos demuestran el papel de la ascendencia definida genómicamente en la expresión fenotípica de la enfermedad, un rango fenotípico de diferentes mutaciones raras en el mismo gen, y enfatizan aún más la importancia de la inclusión en los estudios genéticos.https://orcid.org/0000-0001-6529-7077https://scholar.google.com/citations?hl=es&user=kaGongoAAAAJ&view_op=list_works&sortby=pubdatehttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055000&lang=esRevista Internacional - Indexad
    corecore