55 research outputs found

    Electron beam structuring of Ti6Al4V: New insights on the metal surface properties influencing the bacterial adhesion

    Get PDF
    Soft tissue adhesion and infection prevention are currently challenging for dental transmucosal or percutaneous orthopedic implants. It has previously been shown that aligned micro-grooves obtained by Electron Beam (EB) can drive fibroblast alignment for improved soft tissue adhesion. In this work, evidence is presented that the same technique can also be effective for a reduction of the infection risk. Grooves 10-30 \u3bcm wide and around 0.2 \u3bcm deep were obtained on Ti6Al4V by EB. EB treatment changes the crystalline structure and microstructure in a surface layer that is thicker than the groove depth. Unexpectedly, a significant bacterial reduction was observed. The surfaces were characterized by field emission scanning electron microscopy, X-ray diffraction, confocal microscopy, contact profilometry, wettability and bacterial adhesion tests. The influence of surface topography, microstructure and crystallography on bacterial adhesion was systematically investigated: it was evidenced that the bacterial reduction after EB surface treatment is not correlated with the grooves, but with the microstructure induced by the EB treatment, with a significant bacterial reduction when the surface microstructure has a high density of grain boundaries. This correlation between microstructure and bacterial adhesion was reported for the first time for Ti alloys

    Surface Properties and Antioxidant Activity of Silicate and Borosilicate Bioactive Glasses

    Get PDF
    Herein, silicate and borosilicate bioactive glasses are synthetized and characterized. The antioxidant activity, in the presence and absence of human osteoblasts' progenitor cells, of the different glass compositions, is correlated to the surface properties: wettability, zeta potential, hydroxylation degree, reactivity in simulated body fluid (SBF), and Tris buffer. An enhancing effect of boron in glass reactivity and a stabilizing role of Sr and Mg are evidenced. The scavenging potential of the analyzed bioactive glasses toward reactive oxygen species (ROS) is clearly proved. Moreover, cellular tests confirm the protective effect of the bioactive glasses toward viable cells acting as ROS/RNS species scavenger. The obtained results represent an original improvement of the knowledge concerning the intrinsic antioxidant ability of bioactive glasses with different compositions and the mechanisms involved

    Biological evaluation of a new sodium-potassium silico-phosphate glass for bone regeneration: In vitro and in vivo studies

    Get PDF
    In vitro and in vivo studies are fundamental steps in the characterization of new im-plantable materials to preliminarily assess their biological response. The present study reports the in vitro and in vivo characterizations of a novel experimental silicate bioactive glass (BG) (47.5 B, 47.5 SiO2-10 Na2O-10 K2O-10 MgO-20 CaO-2.5 P2O5 mol.%). Cytocompatibility tests were perfor-med using human mature osteoblasts (U2OS), human mesenchymal stem cells (hMSCs) and human endothelial cells (EA.hy926). The release of the early osteogenic alkaline phosphatase (ALP) marker suggested strong pro-osteogenic properties, as the amount was comparable between hMSCs cultivated onto BG surface and cells cultivated onto polystyrene control. Similarly, real-time PCR revealed that the osteogenic collagen I gene was overexpressed in cells cultivated onto BG surface without biochemical induction. Acute toxicity tests for the determination of the median lethal dose (LD50 ) al-lowed classifying the analyzed material as a slightly toxic substance with LD50 = 4522 ± 248 mg/kg. A statistically significant difference in bone formation was observed in vivo through comparing the control (untreated) group and the experimental one, proving a clear osteogenic effect induced by the implantation at the defect site. Complete resorption of 47.5 B powder was observed after only 3 months in favor of newly formed tissue, thus confirming the high osteostimulatory potential of 47.5 B glass

    Effectiveness of gellan gum scaffolds loaded with <em>Boswellia serrata</em> extract for <em>in-situ</em> modulation of pro-inflammatory pathways affecting cartilage healing

    Get PDF
    \ua9 2024 The AuthorsIn this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel\u27s mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1β. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing

    An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations

    Get PDF
    In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a similar to 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a similar to 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic proosteogenic effect of combined physical stimulations

    3D printing of thermo-responsive methylcellulose hydrogels for cell-sheet engineering

    Get PDF
    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues

    Cytotoxic activity of a plant extract on cancer cells

    Get PDF
    Chemoprevention by natural products may be considered a promising approach to cancer control and management [1]. Many studies have demonstrated antiproliferative, cytostatic and cytotoxic activities of phytochemicals against cancer cells [2]. In this study, a plant extract from Arctium lappa, Berberis vulgaris and Eschscholtia californica was tested as potential anticancer agent. The antitumoral activity of this plant extract was tested on four human cancer cell lines: MCF-7 (breast carcinoma cells), Huh-7 (hepatic carcinoma cells), HTB-43 (oropharyngeal carcinoma cells) and ECV- 304 (urinary bladder carcinoma cells). The efficacy of the extract was compared to the common chemotherapeutic agent cyclophosphamide. Three plant extract concentrations were tested: 800, 650 and 450 ng/ml; for cyclophosphamide, three concentrations were assayed, according to literature data: 1300, 1000 and 850 ng/ml [3]. In addition, plant extract and cyclophosphamide were tested on two primary cell lines as controls, human gingival fibroblasts and human mammary fibroblasts. Cell viability was evaluated by the MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma] colorimetric assay and the new xCELLigence system (Roche) for real-time monitoring of cell viability. All concentrations of plant extract exhibited a high level of cytotoxicity on MCF-7, Huh-7, HTB-43 and ECV-304 cancer cells, similar to cyclophosphamide, though they slightly reduced viability of human gingival and mammary fibroblasts. Conversely, the conventional chemotherapeutic drug showed a marked cytotoxicity on control cells. The potential of the plant extract has been demonstrated in vitro on various types of cancers, suggesting a possible use of this natural product as a promising anticancer agent. Further studies are needed to ascertain its efficacy in vivo and to elucidate its mechanism(s) of action at molecular and biochemical levels

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies
    • …
    corecore