31 research outputs found

    An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments

    Get PDF
    Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow

    Impact of antigen density on recognition by monoclonal antibodies

    Get PDF
    Understanding antigen-antibody interactions is important to many emerging medical and bioanalytical applications. In particular, the levels of antigen expression at the cell surface may determine antibody-mediated cell death. This parameter has a clear effect on outcome in patients undergoing immunotherapy. In this context, CD20 which is expressed in the membrane of B cells has received significant attention as target for immunotherapy of leukemia and lymphoma using the monoclonal antibody rituximab. To systematically study the impact of CD20 density on antibody recognition, we designed self-assembled monolayers that display tunable CD20 epitope densities. For this purpose, we developed in situ click chemistry to functionalize SPR sensor chips. We find that the rituximab binding affinity depends sensitively and non-monotoneously on CD20 surface density. Strongest binding, with an equilibrium dissociation constant (KD = 32 nM) close to values previously reported from in vitro analysis with B cells (apparent KD between 5 and 19 nM), was obtained for an average inter-antigen spacing of 2 nm. This distance is required for improving rituximab recognition, and in agreement with the known requirement of CD20 to form clusters to elicit a biological response. More generally, this study offers an interesting outlook in the understanding of the necessity of epitope clusters for effective mAb recognition

    Cytokines and growth factors cross-link heparan sulfate

    Get PDF
    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12Îł isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors

    Modificaciones fĂ­sicas, quĂ­micas y enzimĂĄticas y sus efectos sobre las propiedades de las pelĂ­culas de quitosano

    Full text link
    corecore