2,081 research outputs found

    Trait mindfulness at baseline predicts increases in telomerase activity over time

    Get PDF
    Introduction Preliminary investigations of cross-sectional samples have linked trait mindfulness with measures related to the hypothalamic–pituitary–adrenal (HPA)-mediated stress response and to the inflammatory system, suggesting that this is one potential pathway linking mindfulness based interventions and health. However, no previous studies explored the association between the trait mindfulness construct and markers of cellular ageing. Methods In the current study we examined in a sample of healthy mothers (n = 92) of a child with Autism Spectrum Disorder (i.e. women showing high levels of chronic psychological stress) the prospective associations between a multidimensional scale of trait mindfulness, the Five Facet Mindfulness Questionnaire (FFMQ), and telomerase activity (TA), a marker of cellular ageing and telomere homeostasis. Participants’ trait mindfulness and TA were assessed at baseline as well as 9 and 18 month follow-up. Results Analysis showed that higher levels of baseline mindfulness on FFMQ observation and describe subscales were related to increase in TA from baseline to 9 month (r = 0.27, P = 0.03 and r = 0.24, P = .04, respectively). Additionally, the FFMQ Describe subscale was related to increase in TA from baseline to 18 month (r = .30, P = .02). Results are reported following covariate adjustment of age, BMI, ethnicity, and education. Discussion Our results showed that higher levels of baseline mindfulness are associated with higher increases in TA after 9 months and 18 months, with increased TA reportedly being associated with decreased oxidative damage, increased telomere length and overall more functional cellular physiology. These findings support a role of mindfulness-related interventions to increase general and mental health

    Scalar GW detection with a hollow spherical antenna

    Get PDF
    We study the response and cross sections for the absorption of GW energy in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere.Comment: latex file, 9 page

    Theoretical description of protein field effects on electronic excitations of biological chromophores

    Get PDF
    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems

    Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors

    Get PDF
    In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar detectors, near to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral density of $\simeq 10^{-49}\ Hz^{-1},thatconvertstoanenergydensityperunitlogarithmicfrequencyof, that converts to an energy density per unit logarithmic frequency of \simeq 8\times10^{-5}\times\rho_cwith with \rho_c\simeq1.9 \times 10^{-26}\ kg/m^3theclosuredensityoftheUniverse.WealsoshowthatbyaddingtheVIRGOinterferometricdetectorunderconstructioninItalytothearray,andbyproperlyreorientingthedetectors,onecanreachasensitivityof the closure density of the Universe. We also show that by adding the VIRGO interferometric detector under construction in Italy to the array, and by properly re- orienting the detectors, one can reach a sensitivity of \simeq 6 \times10^{-5}\times\rho_c.WethencalculatethatthepairformedbyVIRGOandonelargemasssphericaldetectorproperlylocatedinoneofthenearbyavailablesitesinItalycanreahasensitivityof. We then calculate that the pair formed by VIRGO and one large mass spherical detector properly located in one of the nearby available sites in Italy can reah a sensitivity of \simeq 2\times10^{-5}\times \rho_cwhileapairofsuchsphericaldetectorsatthesamesitesofAURIGAandNAUTILUScanachievesensitivitiesof while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can achieve sensitivities of \simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at http://axln01.lnl.infn.it/reports/stoch.htm

    Testing Theories of Gravity with a Spherical Gravitational Wave Detector

    Get PDF
    We consider the possibility of discriminating different theories of gravity using a recently proposed gravitational wave detector of spherical shape. We argue that the spin content of different theories can be extracted relating the measurements of the excited spheroidal vibrational eigenmodes to the Newman-Penrose parameters. The sphere toroidal modes cannot be excited by any metric GW and can be thus used as a veto.Comment: latex file, 16 pages, 1 figur

    Wideband dual sphere detector of gravitational waves

    Get PDF
    We present the concept of a sensitive AND broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures one approaches the Standard Quantum Limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector of overall size of 2 m, would reach spectral strain sensitivities of 2x10^-23/Sqrt{Hz} between 1000 Hz and 3000 Hz.Comment: 4 pages, 3 figures. Changed content. To appear in Phys. Rev. Let

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001
    corecore