9 research outputs found

    Robust recovery of missing data in electricity distribution systems

    Get PDF
    The advanced operation of future electricity distribution systems is likely to require significant observability of the different parameters of interest (e.g., demand, voltages, currents, etc.). Ensuring completeness of data is, therefore, paramount. In this context, an algorithm for recovering missing state variable observations in electricity distribution systems is presented. The proposed method exploits the low rank structure of the state variables via a matrix completion approach while incorporating prior knowledge in the form of second order statistics. Specifically, the recovery method combines nuclear norm minimization with Bayesian estimation. The performance of the new algorithm is compared to the information-theoretic limits and tested trough simulations using real data of an urban low voltage distribution system. The impact of the prior knowledge is analyzed when a mismatched covariance is used and for a Markovian sampling that introduces structure in the observation pattern. Numerical results demonstrate that the proposed algorithm is robust and outperforms existing state of the art algorithms

    Recovering Missing Data via Matrix Completion in Electricity Distribution Systems

    Get PDF
    The performance of matrix completion based recovery of missing data in electricity distribution systems is analyzed. Under the assumption that the state variables follow a multivariate Gaussian distribution the matrix completion recovery is compared to estimation and information theoretic limits. The assumption about the distribution of the state variables is validated by the data shared by Electricity North West Limited. That being the case, the achievable distortion using minimum mean square error (MMSE) estimation is assessed for both random sampling and optimal linear encoding acquisition schemes. Within this setting, the impact of imperfect second order source statistics is numerically evaluated. The fundamental limit of the recovery process is characterized using Rate-Distortion theory to obtain the optimal performance theoretically attainable. Interestingly, numerical results show that matrix completion based recovery outperforms MMSE estimator when the number of available observations is low and access to perfect source statistics is not availabl

    Erratum. Sulzbacheromyces leucodontium (Basidiomycota, Lepidostromataceae), a new species of basidiolichen widely distributed in the Neotropics. Phytotaxa 597 (2): 153-164.

    No full text
    Coca, L.F., Gómez Gómez, S., Guzmán Guillermo, J., Trujillo Trujillo, E., Zuluaga, A., Dal Forno, M., Lumbsch, H.T. (2023): Erratum. Sulzbacheromyces leucodontium (Basidiomycota, Lepidostromataceae), a new species of basidiolichen widely distributed in the Neotropics. Phytotaxa 597 (2): 153-164. Phytotaxa 612 (2): 250-250, DOI: 10.11646/phytotaxa.612.2.10, URL: http://dx.doi.org/10.11646/phytotaxa.612.2.1

    Basis of Chloride Transport in Ciliary Epithelium

    No full text

    Ganglion-Cell Tumor of the Filum Terminale. Immunohistochemical Characterization.

    No full text

    Measurement of the tbartt bar{t} Production Cross Section in pbarpp bar{p} collisions at sqrtssqrt{s} = 1.96-TeV using Lepton + Jets Events with Jet Probability bb^- tagging

    No full text
    corecore