15 research outputs found

    Plasmonic hot-electron reconfigurable photodetector based on phase-change material Sb2S3

    Get PDF
    Hot-carrier based photodetectors and enhanced by surface plasmons (SPs) hot-electron injection into semiconductors, are drawing significant attention. This photodetecting strategy yields to narrowband photoresponse while enabling photodetection at sub-bandgap energies of the semiconductor materials. In this work, we analyze the design of a reconfigurable photodetector based on a metal-semiconductor (MS) configuration with interdigitated dual-comb Au electrodes deposited on the semiconducting Sb2S3 phase-change material. The reconfigurability of the device relies on the changes of refractive index between the amorphous and crystalline phases of Sb2S3 that entail a modulation of the properties of the SPs generated at the dual-comb Au electrodes. An exhaustive numerical study has been realized on the Au grating parameters formed by the dual-comb electrodes, and on the SP order with the purpose of optimizing the absorption of the device, and thus, the responsivity of the photodetector. The optimized photodetector layout proposed here enables tunable narrowband photodetection from the O telecom band (λ = 1310 nm) to the C telecom band (λ = 1550 nm).Horizon 2020 Framework Programme (No 899598 – PHEMTRONICS

    Polarimetry analysis and optical contrast of Sb₂S₃ phase change material

    Get PDF
    Phase-change materials (PCMs) are the cornerstone for the development of reconfigurable and programmable photonic devices. Sb2S3 has been recently proposed as an interesting PCM due to its low-losses in the visible and near-IR. Here, we report the use of imaging polarimetry and spectroscopic ellipsometry to reveal and directly measure the optical properties of Sb2S3 both in crystalline and amorphous states obtained upon crystallization by annealing in air of chemical bath deposited amorphous Sb2S3. The Mueller Matrix polarimetric analysis reveals the strong anisotropy of the Sb2S3 crystallites which crystallize in radial spherulitic domains in contrast to the optical isotropy of the amorphous films. A refractive index contrast of Δn = 0.5 is demonstrated while maintaining low-losses at telecommunications C-band, i.e., λ = 1550 nm

    Interlaboratory study on Sb2S3 interplay between structure, dielectric function, and morphous-to-crystalline phase change for photonics

    Get PDF
    Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250_C % T < 300_C, resulting in Type-I spherulitic crystallization yielding an optical contrast Dn _ 0.4, and 300 % T < 350 _ C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Dn _ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.The authors acknowledge the support from the European Union’s Horizon 2020 research and innovation program (No 899598 - PHEMTRONICS)

    Organic–Inorganic Ternary Nanohybrids of Single-Walled Carbon Nanohorns for Room Temperature Chemiresistive Ethanol Detection

    No full text
    Organic&ndash;inorganic ternary nanohybrids consisting of oxidized-single walled carbon nanohorns-SnO2-polyvinylpyrrolidone (ox-SWCNH/SnO2/PVP) with stoichiometry 1/1/1 and 2/1/1 and ox-SWCNH/ZnO/PVP = 5/2/1 and 5/3/2 (all mass ratios) were synthesized and characterized as sensing films of chemiresistive test structures for ethanol vapor detection in dry air, in the range from 0 up to 50 mg/L. All the sensing films had an ox-SWCNH concentration in the range of 33.3&ndash;62.5 wt%. A comparison between the transfer functions and the response and recovery times of these sensing devices has shown that the structures with ox-SWCNH/SnO2/PVP = 1/1/1 have the highest relative sensitivities of 0.0022 (mg/L)&minus;1, while the devices with ox-SWCNH/SnO2/PVP = 2/1/1 have the lowest response time (15 s) and recovery time (50 s) for a room temperature operation, proving the key role of carbonic material in shaping the static and dynamic performance of the sensor. These response and recovery times are lower than those of &ldquo;heated&rdquo; commercial sensors. The sensing mechanism is explained in terms of the overall response of a p-type semiconductor, where ox-SWCNH percolated between electrodes of the sensor, shunting the heterojunctions made between n-type SnO2 or ZnO and p-type ox-SWCNH. The hard&ndash;soft acid&ndash;base (HSAB) principle supports this mechanism. The low power consumption of these devices, below 2 mW, and the sensing performances at room temperature may open new avenues towards ethanol sensors for passive samplers of environment monitoring, alcohol test portable instruments and wireless network sensors for Internet of Things applications

    Electrical Percolation Threshold and Size Effects in Polyvinylpyrrolidone-Oxidized Single-Wall Carbon Nanohorn Nanocomposite: The Impact for Relative Humidity Resistive Sensors Design

    No full text
    This paper reports, for the first time, on the electrical percolation threshold in oxidized carbon nanohorns (CNHox)–polyvinylpyrrolidone (PVP) films. We demonstrate—starting from the design and synthesis of the layers—how these films can be used as sensing layers for resistive relative humidity sensors. The morphology and the composition of the sensing layers are investigated through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and RAMAN spectroscopy. For establishing the electrical percolation thresholds of CNHox in PVP, these nanocomposite thin films were deposited on interdigitated transducer (IDT) dual-comb structures. The IDTs were processed both on a rigid Si/SiO2 substrate with a spacing of 10 µm between metal digits, and a flexible substrate (polyimide) with a spacing of 100 µm. The percolation thresholds of CNHox in the PVP matrix were equal to (0.05–0.1) wt% and 3.5 wt% when performed on 10 µm-IDT and 100 µm-IDT, respectively. The latter value agreed well with the percolation threshold value of about 4 wt% predicted by the aspect ratio of CNHox. In contrast, the former value was more than an order of magnitude lower than expected. We explained the percolation threshold value of (0.05–0.1) wt% by the increased probability of forming continuous conductive paths at much lower CNHox concentrations when the gap between electrodes is below a specific limit. The change in the nanocomposite’s longitudinal Young modulus, as a function of the concentration of oxidized carbon nanohorns in the polymer matrix, is also evaluated. Based on these results, we identified a new parameter (i.e., the inter-electrode spacing) affecting the electrical percolation threshold in micro-nano electronic devices. The electrical percolation threshold’s critical role in the resistive relative-humidity sensors’ design and functioning is clearly emphasized

    Thermal simulation of surface micromachined polysilicon hot plates of low power consumption

    Get PDF
    A simple, IC compatible, surface micromachined polysilicon membrane was technologically designed and thermally simulated by 3D finite element ‘COSMOS' program in order to investigate its capability to work as a micro hot plate for a gas sensing test structure of low power consumption. For an optimized layout based on four ‘poly' suspended bridges and a central ‘poly' pillar supporting the 110×110 μm2 ‘poly' membrane separated from the silicon substrate by 1 μm of air gap, temperatures as high as 673 K were obtained for an input power of 100 mW

    Multiband, multi-polarization plasmonic photodetector and fabrication method

    No full text
    The present disclosure presents an innovative design concept for metal interdigitated grating-based metal-semiconductor-metal Schottky plasmonic photodetectors, able to detect multiband, multi-polarization electromagnetic radiation in the ultraviolet, visible, near and mid infrared spectrum by a using a single device with two electrodes which are both positioned on the same surface of semiconductor device, being thus a genuine planar semiconducting technology. The innovative concept shows that even if the surface plasmon enhanced photosensitive devices are wavelength and polarization-selective, it is possible to detect two and more narrow bands of the electromagnetic radiation with different polarizations by using a single-device two-electrode plasmonic Schottky photodetector where both metal contacts are placed on the device surface which is receiving the radiation. The novel design concept and associated fabrication technology will be presented by means of a generic metal-semiconductor-metal device, and specific examples will be then described.Solicitud Europea: 22465517.5 (17.03.2022)Nº Pub. Solicitud Europea: EP4246597A1 (20.09.2023

    Sonochemically synthetized ZnO-Graphene nanohybrids and its characterization

    No full text
    The paper presents the morphological, structural and compositional properties of the sonochemically prepared ZnO-1.4wt% Graphene (Z-G) nanocomposites as a function of pH value of suspension varying from 8.5 to 14 and thermal annealing at 450°C in nitrogen or air ambient. The SEM analysis of the Z-G hybrids dried at 150°C in air has shown a nano-flower like nanostructure for a pH value of 14. The XRD analysis of dried Z-G hybrids revealed a crystallite size increase from 3.5 nm to 18.4 nm with pH increase, and this result was explained in terms of colloids zeta potential evolution with pH value. The Raman and EDS spectroscopy have shown a split of the G band (1575 cm−1) of graphene into two bands (1575 cm−1 and 1605 cm−1), an increased height of D (1323 cm−1) band, and an additional amount of carbon due to CO2 absorption from the air, respectively. The carbon incorporation increased with the decrease of pH, and was associated with a hydrozincite phase, Zn5(CO3)2(OH)6. The formation of dried Z-G nanocomposite was clearly demonstrated only at a pH value equal to 14, where two ZnO Raman active bands at 314.9 cm−1 and 428.2 cm−1 appeared. This result may indicate the sensitivity of the Raman spectroscopy to the nanoflower-like nanostructure of dried Z-G hybrids prepared at pH=14. The thermal treatment of Z-G hybrids in N2at 450°C has increased the number of ZnO Raman bands as a function of pH value, it has decreased the amount of additional carbon by conversion of hydrozincite to ZnO and preserved the graphene profile. The thermal treatment in air at 450°C has increased the crystalline symmetry and stoichiometry of the ZnO as revealed by high and narrow Raman band from 99 cm−1 specific to Zn optical phonons, but it has severely affected the graphene profile in the Z-G hybrid, due to combustion of graphene in oxygen from the ambient

    Numerical Analysis of Zeptogram/Hz-Level Mass Responsivity for In-Plane Resonant Nano-Electro-Mechanical Sensors

    No full text
    This paper presents numerical analysis of an in-plane resonant Nano-Electro-Mechanical (NEM) sensor based on mass-detection principle using a 3D FEM electromechanical simulation combined with a NEM/MOS hybrid circuit simulation. The self-assembled linker molecules are modeled simply by adding extra surface coating layer, and three different functionalization schemes are studied: top and bottom, only top and all-around configurations. We investigate the impacts of the coating layer mass change as well as stiffness change on the resonance frequency by varying thickness of the coating layer for all the configurations. The small signal AC analysis of the sensor is performed, and the effect of the coating layer on the output signal is studied. Mass of the coating layer is then changed in order to model the random adsorption of target molecules onto the coating layer surface. We show that the NEM sensor enables to achieve the mass responsivity of 0.05 zeptogram/Hz for all the different functionalization schemes, which is approximately eleven orders smaller than that reported for present quartz crystal microbalance sensors. Moreover, we clarify that the scaling rule of the mass responsivity is given by k4 regardless of the different functionlization configurations
    corecore