3,629 research outputs found

    Thermally isolated deployable shield for spacecraft

    Get PDF
    A thermally isolated deployable shield for spacecraft is provided utilizing a plurality of lattice panels stowable generally against the craft and deployable to some fixed distance from the craft. The lattice panels are formed from replaceable shield panels affixed to lattice structures. The lattice panels generally encircle the craft providing 360 degree coverage therearound. Actuation means are provided from translating the shield radially outward from the craft and thermally isolating the shield from the craft. The lattice panels are relatively flexible, allowing the shield to deploy to variable diameters while retaining uniform curvature thereof. Restraining means are provided for holding the shield relatively tight in its stowed configuration. Close-out assemblies provide light sealing and protection of the annular spaces between the deployed shield and the crafts end structure

    Quantifying the Effects of Hyperthermal Atomic Oxygen and Thermal Fatigue Environments on Carbon Nanotube Sheets for Space-Based Applications

    Get PDF
    The effects of atomic oxygen and thermal fatigue on two different types of carbon nanotube sheets were studied. One set was treated with nitric acid, while the other set was left untreated. Monotonic tensile tests were performed before and after exposure to determine the effects of either exposure type on the sheets’ mechanical properties. Electrical conductivity and electromagnetic interference measurements were recorded to determine the effects of AO-exposure and thermal cycling on the sheets’ electrical properties. Neither exposure type affected the sheets’ specific strengths. Both exposure types increased the sheets’ specific stiffnesses and decreased the sheets’ strains at failure. The electrical conductivity of both sheets decreased due to the different exposure types, while the EMI shielding effectiveness was unaffected. Scanning electron microscopy was used to observe any changes in the sheets’ surface morphologies, while energy-dispersive X-ray spectroscopy was used to determine the effects of AO on the sheets’ chemical makeup

    Urban transportation: Perspectives on mobility and choice

    Get PDF
    A study of urban transportation systems are presented characterized by intensive scrutiny of many ideas, philosophies, and academic perspectives. This report is intended to communicate some dimensions of the urban transportation problem to the general public

    GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment

    Get PDF
    The bright GRB 050408 was localized by HETE-II near local midnight, enabling an impressive ground-based followup effort as well as space-based followup from Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical photometry and spectrum of the afterglow provide the cornerstone for our analysis. Under the traditional assumption that the visible waveband was above the peak synchrotron frequency and below the cooling frequency, the optical photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested by others. A break is seen in the X-ray data at early times (at ~12600 sec after the GRB). The spectral slope of the optical spectrum is consistent with p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57 mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the result of a refreshed shock. This burst stands out in that the optical and X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V > -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II absorption lines with a column density through the GRB host that exceeds the largest values observed for the Milky Way by an order of magnitude. Furthermore, the Ti II equivalent width is in the top 1% of Mg II absorption-selected QSOs. This suggests that the large-scale environment of GRB 050408 has significantly lower Ti depletion than the Milky Way and a large velocity width (delta v > 200 km/s).Comment: ApJ submitte

    Boolean delay equations on networks: An application to economic damage propagation

    Full text link
    We introduce economic models based on Boolean Delay Equations: this formalism makes easier to take into account the complexity of the interactions between firms and is particularly appropriate for studying the propagation of an initial damage due to a catastrophe. Here we concentrate on simple cases, which allow to understand the effects of multiple concurrent production paths as well as the presence of stochasticity in the path time lengths or in the network structure. In absence of flexibility, the shortening of production of a single firm in an isolated network with multiple connections usually ends up by attaining a finite fraction of the firms or the whole economy, whereas the interactions with the outside allow a partial recovering of the activity, giving rise to periodic solutions with waves of damage which propagate across the structure. The damage propagation speed is strongly dependent upon the topology. The existence of multiple concurrent production paths does not necessarily imply a slowing down of the propagation, which can be as fast as the shortest path.Comment: Latex, 52 pages with 22 eps figure

    Geographic variation in host selection in the spider wasps \u3ci\u3eEntypus unifasciatus\u3c/i\u3e (Say) and \u3ci\u3eTachypompilus ferrugineus\u3c/i\u3e (Say) (Hymenoptera: Pompilidae), II

    Get PDF
    This paper is the sequel to a 20 year-long (2002–2021) study of geographic variation in host selec­tion in the common American spider wasps (Hymenoptera: Pompilidae) Entypus unifasciatus (Say) (Pepsini) and Tachypompilus ferrugineus (Say) (Pompilini) (rusty spider wasp). Geography and host spider family are strongly linked in both species when 3387 host spider locality records from the years 1918–2021 are mapped. Entypus unifasciatus lycosid host records are plentiful from 43–44° N in the United States and southern Ontario to northern Mexico. Tachypompilus ferrugineus lycosid host records are abundant from southern Ontario and New England southward to Mexico east of the Rocky Mountains. The vast majority (~80%) of E. unifasciatus and T. ferrugineus pisaurid host records are from the southeastern United States. Trechaleid host records for E. unifasciatus and T. ferrugineus are predominant in southern Mexico and Central America, while ctenid host records for these spider wasps are prevalent in Central America and, especially, South America. All E. unifasciatus sparassid host records are from extreme southwestern United States and north­ern Mexico, whereas T. ferrugineus sparassid host records are scattered from Texas, Florida and Hispaniola/Puerto Rico southward to Panama and Brazil. Based on this study Lycosidae is the predominant host spider family in the Americas for E. unifasciatus (83.1%) and T. ferrugineus (64.0%) followed by Pisauridae (4.9%, 24.8%), Trechaleidae (4.2%, 6.0%), Ctenidae (4.3%, 2.7%), and Sparassidae (3.1%, 1.6%). Lycosidae and Pisauridae are overrepresented in this study as most host records (88.1%) are from the United States and On­tario, Canada where such species are abundant. Trechaleidae and Ctenidae are grossly underrepresented as host records from Mexico, Central America and South America are scarce (11.9%). Zoropsidae/Miturgidae 2 · March 31, 2022 Kurczewski et al. and Zoropsidae/Agelenidae/Selenopidae are atypical host spider families for E. unifasciatus (0.2%, 0.2%) and T. ferrugineus (0.7%, 0.2%, \u3c0.1%), respectively. Rabidosa rabida (Walckenaer) (Lycosidae) (rabid wolf spi­der) is the predominant host spider species for both E. unifasciatus (47.7%) and T. ferrugineus (48.0%) based mainly on United States host records

    Computational studies of light acceptance and propagation in straight and curved multimodal active fibres

    Get PDF
    A Monte Carlo simulation has been performed to track light rays in cylindrical multimode fibres by ray optics. The trapping efficiencies for skew and meridional rays in active fibres and distributions of characteristic quantities for all trapped light rays have been calculated. The simulation provides new results for curved fibres, where the analytical expressions are too complex to be solved. The light losses due to sharp bending of fibres are presented as a function of the ratio of curvature to fibre radius and bending angle. It is shown that a radius of curvature to fibre radius ratio of greater than 65 results in a light loss of less than 10% with the loss occurring in a transition region at bending angles of pi/8 rad.Comment: 21 pages, 13 figure

    Cosmological Constraints from calibrated Yonetoku and Amati relation implies Fundamental plane of Gamma-ray bursts

    Full text link
    We consider two empirical relations using data only from the prompt emission of Gamma-Ray Bursts (GRBs), peak energy (EpE_p) - peak luminosity (LpL_p) relation (so called Yonetoku relation) and EpE_p-isotropic energy (EisoE_{\rm iso}) relation (so called Amati relation). We first suggest the independence of the two relations although they have been considered similar and dependent. From this viewpoint, we compare constraints on cosmological parameters, Ωm\Omega_m and ΩΛ\Omega_{\Lambda}, from the Yonetoku and Amati relations calibrated by low-redshift GRBs with z<1.8z < 1.8. We found that they are different in 1-σ\sigma level, although they are still consistent in 2-σ\sigma level. This and the fact that both Amati and Yonetoku relations have systematic errors larger than statistical errors suggest the existence of a hidden parameter of GRBs. We introduce the luminosity time TLT_L defined by TL≡Eiso/LpT_L\equiv E_{\rm iso}/L_p as a hidden parameter to obtain a generalized Yonetoku relation as (Lp/1052ergs−1)=10−3.88±0.09(Ep/keV)1.84±0.04(TL/s)−0.34±0.04(L_p/{10^{52} \rm{erg s^{-1}}}) = 10^{-3.88\pm0.09}(E_p/{\rm{keV}})^{1.84\pm0.04} (T_L/{\rm{s}})^{-0.34\pm0.04}. The new relation has much smaller systematic error, 30%, and can be regarded as "Fundamental plane" of GRBs. We show a possible radiation model for this new relation. Finally we apply the new relation for high-redshift GRBs with 1.8<z<5.61.8 < z < 5.6 to obtain (Ωm,ΩΛ)=(0.16−0.06+0.04,1.20−0.09+0.03)(\Omega_m,\Omega_{\Lambda}) = (0.16^{+0.04}_{-0.06},1.20^{+0.03}_{-0.09}), which is consistent with the concordance cosmological model within 2-σ\sigma level.Comment: 5 pages, 6 figures, published in JCA
    • …
    corecore