78 research outputs found

    Age validation of quillback rockfish (Sebastes maliger) using bomb radiocarbon

    Get PDF
    Rockfishes (Sebastes spp.) support one of the most economically important f isheries of the Pacific Northwest and it is essential for sustainable management that age estimation procedures be validated for these species. Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon (14C) signal in the ocean environment that scientists have identified as a useful tracer and chronological marker in natural systems. In this study, we first demonstrated that fewer samples are necessary for age validation using the bomb-generated 14C signal by emphasizing the utility of the time-specific marker created by the initial rise of bomb-14C. Second, the bomb-generated 14C signal retained in fish otoliths was used to validate the age and age estimation method of the quillback rockfish (Sebastes maliger) in the waters of southeast Alaska. Radiocarbon values from the first year’s growth of quillback rockfish otoliths were plotted against estimated birth year to produce a 14C time series spanning 1950 to 1985. The initial rise in bomb-14C from prebomb levels (~ –90‰) occurred in 1959 [±1 year] and 14C levels rose relatively rapidly to peak Δ14C values in 1967 (+105.4‰) and subsequently declined through the end of the time series in 1985 (+15.4‰). The agreement between the year of initial rise of 14C levels from the quillback rockfish time series and the chronology determined for the waters of southeast Alaska from yelloweye rockfish (S. ruberrimus) otoliths validated the aging method for the quillback rockfish. The concordance of the entire quillback rockfish 14C time series with the yelloweye rockfish time series demonstrated the effectiveness of this age validation technique, confirmed the longevity of the quillback rockfish up to a minimum of 43 years, and strongly confirms higher age estimates of u

    Radiometric validation of age, growth, and longevity for the blackgill rockfish (Sebastes melanostomus)

    Get PDF
    As nearshore fish populations decline, many commercial fishermen have shifted fishing effort to deeper continental slope habitats to target fishes for which biological information is limited. One such fishery that developed in the northeastern Pacific Ocean in the early 1980s was for the blackgill rockfish (Sebastes melanostomus), a deep-dwelling (300−800 m) species that congregates over rocky pinnacles, mainly from southern California to southern Oregon. Growth zone-derived age estimates from otolith thin sections were compared to ages obtained from the radioactive disequilibria of 210Pb, in relation to its parent, 226Ra, in otolith cores of blackgill rockfish. Age estimates were validated up to 41 years, and a strong pattern of agreement supported a longevity exceeding 90 years. Age and length data fitted to the von Bertalanffy growth function indicated that blackgill rockfish are slow-growing (k= 0.040 females, 0.068 males) and that females grow slower than males, but reach a greater length. Age at 50% maturity, derived from previously published length-at-maturity estimates, was 17 years for males and 21 years for females. The results of this study agree with general life history traits already recognized for many Sebastes species, such as long life, slow growth, and late age at maturation. These traits may undermine the sustainability of blackgill rockfish populations when heavy fishing pressure, such as that which occurred in the 1980s, is applied

    Biogenic Matter Diagenesis on the Sea Floor: A Comparison Between Two Continental Margin Transects

    Get PDF
    Benthic chamber measurements of the reactants and products involved with biogenic matter diagenesis (oxygen, ammonium, nitrate, silicate, phosphate, TCO2, alkalinity) were used to define fluxes of these solutes into and out of the sediments off southern and central California. Onshore to offshore transects indicate many similarities in benthic fluxes between these regions. The pattern of benthic organic carbon oxidation as a function of water depth, combined with published sediment trap records, suggest that the supply of organic carbon from vertical rain can just meet the sedimentary carbon oxidation + burial demand for the central California region between the depths 100-3500 m. However, there is not enough organic carbon raining through the upper water column to support its oxidation and burial in the basins off southern California. Lateral transport and focusing of refractory carbon within these basins is proposed to account for the carbon buried. The organic carbon burial efficiency is greater off southern California (40-60%) compared to central California (2-20%), even though carbon rain rates are comparable. Oxygen uptake rates are not sensitive to bottom water oxygen concentrations nor to the bulk wt. % organic carbon in surficial sediments. Nitrate uptake rates are well defined by the depth of oxygen penetration into the sediments and the overlying water column nitrate concentration. Nitrate uptake accounts for about 50% of the total denitrification taking place in shelf sediments and denitrification (0.1-1.0 mmolN/m2d) occurs throughout the entire study region. The ratio of carbon oxidized to opal dissolved on the sea floor is constant (0.8 ± 0.2) through a wide range of depths, supporting the hypothesis that opal dissolution kinetics may be dominated by a highly reactive phase. Sea floor carbonate dissolution is negligible within the oxygen minimum zone and reaches maximal rates just above and below this zone (0.2-2.0 mmol/m2d)

    COOK19MV Cook Expedition Leg 19 - Cruise Data. In Data from Scripps Research Expeditions 1953-2005

    No full text
    corecore