28 research outputs found
Neutrino Detection With CLEAN
This article describes CLEAN, an approach to the detection of low-energy
solar neutrinos and neutrinos released from supernovae. The CLEAN concept is
based on the detection of elastic scattering events (neutrino-electron
scattering and neutrino-nuclear scattering) in liquified noble gases such as
liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly
in the ultraviolet. Key to the CLEAN technique is the use of a thin film of
wavelength-shifting fluor to convert the ultraviolet scintillation light to the
visible. This allows the same liquid to be used as both a passive shielding
medium and an active self-shielding detector, allowing lower intrinsic
radioactive backgrounds at low energies. Liquid neon is a particularly
promising medium for CLEAN. Because liquid neon has a high scintillation yield,
has no long-lived radioactive isotopes, and can be easily purified by use of
cold traps, it is an ideal medium for the detection of rare nuclear events. In
addition, neon is inexpensive, dense, and transparent to its own scintillation
light, making it practical for use in a large self-shielding apparatus. Monte
Carlo simulations of gamma ray backgrounds have been performed assuming liquid
neon as both shielding and detection medium. Gamma ray events occur with high
probability in the outer parts of the detector. In contrast, neutrino
scattering events occur uniformly throughout the detector. We discriminate
background gamma ray events from events of interest based on a spatial Maximum
Likelihood method estimate of event location. Background estimates for CLEAN
are presented, as well as an evaluation of the sensitivity of the detector for
neutrinos. Given these simulations, the physics potential of the CLEAN
approach is evaluated.Comment: 21 pages, 3 figures. Submitted to Astroparticle Physic
Radiative β decay of the free neutron
The theory of quantum electrodynamics predicts that the β decay of the neutron into a proton, electron, and antineutrino is accompanied by a continuous spectrum of emitted photons described as inner bremsstrahlung. While this phenomenon has been observed in nuclear β decay and electron-capture decay for many years, it has only been recently observed in free-neutron decay. We present a detailed discussion of an experiment in which the radiative decay mode of the free neutron was observed. In this experiment, the branching ratio for this rare decay was determined by recording photons that were correlated with both the electron and proton emitted in neutron decay. We determined the branching ratio for photons with energy between 15 and 340 keV to be (3.09±0.32)×10-3 (68% level of confidence), where the uncertainty is dominated by systematic effects. This value for the branching ratio is consistent with theoretical predictions. The characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the theoretical spectrum
A gamma- and X-ray detector for cryogenic, high magnetic field applications
As part of an experiment to measure the spectrum of photons emitted in
beta-decay of the free neutron, we developed and operated a detector consisting
of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs).
The detector was operated near liquid nitrogen temperature in the bore of a
superconducting magnet and registered photons with energies from 5 keV to 1000
keV. To enlarge the detection range, we also directly detected soft X-rays with
energies between 0.2 keV and 20 keV with three large area APDs. The
construction and operation of the detector is presented, as well as information
on operation of APDs at cryogenic temperatures
Fast Neutron Detection with 6Li-loaded Liquid Scintillator
We report on the development of a fast neutron detector using a liquid
scintillator doped with enriched Li-6. The lithium was introduced in the form
of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid
scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL
glass cell was filled with the scintillator and irradiated with fission-source
neutrons. Fast neutrons may produce recoil protons in the scintillator, and
those neutrons that thermalize within the detector volume can be captured on
the Li-6. The energy of the neutron may be determined by the light output from
recoiling protons, and the capture of the delayed thermal neutron reduces
background events. In this paper, we discuss the development of this 6Li-loaded
liquid scintillator, demonstrate the operation of it in a detector, and compare
its efficiency and capture lifetime with Monte Carlo simulations. Data from a
boron-loaded plastic scintillator were acquired for comparison. We also present
a pulse-shape discrimination method for differentiating between electronic and
nuclear recoil events based on the Matusita distance between a normalized
observed waveform and nuclear and electronic recoil template waveforms. The
details of the measurements are discussed along with specifics of the data
analysis and its comparison with the Monte Carlo simulation
Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons
The neutron beta-decay lifetime plays an important role both in understanding
weak interactions within the framework of the Standard Model and in theoretical
predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In
previous work, we successfully demonstrated the trapping of ultracold neutrons
(UCN) in a conservative potential magnetic trap. A major upgrade of the
apparatus is nearing completion at the National Institute of Standards and
Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89
nm neutrons is incident on a superfluid 4He target within the minimum field
region of an Ioffe-type magnetic trap. A fraction of the neutrons is
downscattered in the helium to energies <200 neV, and those in the appropriate
spin state become trapped. The inverse process is suppressed by the low phonon
density of helium at temperatures less than 200 mK, allowing the neutron to
travel undisturbed. When the neutron decays the energetic electron ionizes the
helium, producing scintillation light that is detected using photomultiplier
tubes. Statistical limitations of the previous apparatus will be alleviated by
significant increases in field strength and trap volume resulting in twenty
times more trapped neutrons.Comment: 5 pages, 5 figure
Magnetic trapping of ultracold neutrons
Three-dimensional magnetic confinement of neutrons is reported. Neutrons are
loaded into an Ioffe-type superconducting magnetic trap through inelastic
scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low
energy and in the appropriate spin state are confined by the magnetic field
until they decay. The electron resulting from neutron decay produces
scintillations in the liquid helium bath that results in a pulse of extreme
ultraviolet light. This light is frequency downconverted to the visible and
detected. Results are presented in which 500 +/- 155 neutrons are magnetically
trapped in each loading cycle, consistent with theoretical predictions. The
lifetime of the observed signal, 660 s +290/-170 s, is consistent with the
neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background:
In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).
Findings:
Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001).
Interpretation:
In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Recommended from our members
SPATIAL STATISTICS FOR PREDICTING FLOW THROUGH A ROCK FRACTURE
Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs