19 research outputs found

    Application of ensemble approaches to the assimilation of remotely sensed data into spatialized numerical simulations of seasonal snow cover

    No full text
    La connaissance de la variabilité du manteau neigeux est indispensable pour la prévision du risque d'avalanche ainsi que pour le suivi de la ressource en eau. D'une part, la couverture spatio-temporelle des observations in-situ et télédétectées de la neige est limitée. Les réflectances satellites dans le visible et le proche infra-rouge fournissent de précieuses informations sur les propriétés de surface du manteau neigeux mais ont une couverture par- cellaire, notamment à cause des nuages. De la même manière, les observations in-situ de hauteur de neige (HN) ont une représentativité et une couverture spatiale limitées. D'autre part, les modèles détaillés du manteau neigeux offrent la possibilité de simuler la stratigraphie complète du manteau neigeux en tout point. Cependant ceux-ci souffrent d'importantes erreurs provenant de leurs forçages météorologiques ainsi que de leur propre représentation de la physique de la neige. Dans ce contexte, l'assimilation de données, qui permet d'intégrer l'information provenant des observations dans les simulations de ces modèles, semble prometteuse. L'objectif de cette thèse est d'évaluer la capacité de l'assimilation de réflectances satellites et d'observations in-situ de HN à améliorer la simulation du manteau neigeux en montagne. Les problématiques suivantes seront donc abordées : • Les observations de réflectances satellites de la neige permettent-elles de mieux contraindre la modélisation du manteau neigeux en montagne ? • Peut-on propager de l'information sur l'état du manteau neigeux depuis des zones observées vers des zones non-observées ? • Dans quelle mesure peut-on utiliser les observations in-situ de HN pour améliorer les simulations du manteau neigeux dans leur voisinage ? Nous avons choisi d'utiliser une approche d'assimilation de données ensembliste séquentielle, untilisant le Filtre Particulaire (FP) qui est adapté aux modèles détaillés du manteau neigeux. Le système de modélisation d'ensemble est basé sur ESCROC, un ensemble de modèles multi-physiques du manteau neigeux, forcé par un ensemble de perturbations stochastiques des analyses météorologiques SAFRAN. Cette conception permet à la chaîne de modélisation de tenir compte de ses principales sources d'incertitude. Plusieurs versions innovantes du FP ont été développées afin d'assimiler un grand nombre d'observations simultanément, tout en évitant la dégénérescence du FP, un problème apparaissant lorsque le nombre d'observations augmente.(Palchetti et al., 2021). Le potentiel de l'assimilation de réflectances satellites a été estimé en comparant des observations du capteur satellite MODIS avec des sorties de simulations. Des expériences jumelles assimilant des observations partielles nous ont permis d'analyser la capacité du FP à propager de l'information vers des zones non-observées. Enfin, nous avons évalué l'apport de l'assimilation d'un réseau d'observations de HN couvrant les Alpes et les Pyrénées par une approche de validation croisée de type "un contre tous". Nos résultats montrent que l'approche proposée permet d'éviter la dégénérescence du FP tout en réussissant à propager de l'information entre différentes conditions topographiques. Un biais a été mis en evidence dans les observations standard MODIS, qui empêche leur assimilation directe. En revanche, nous avons mis en valeur le bénéfice de l'assimilation de HN dans les zones où les erreurs de modélisation sont systématiques et dépassent la variabilité naturelle. Ce travail ouvre la voie à l'assimilation d'autres produits satellitaires ainsi que d'observations in-situ de HS dans un contexte spatialisé, représentant un saut qualitatif important pour la prévision du risque d'avalanche et l'hydrologie de montagne.Understanding mountain snowpack variability is key to anticipate avalanche hazards and monitor water resources. On the one hand, remotely-sensed and in-situ observations of snow have a limited spatial and temporal coverage. For instance, visible and near infrared satellite reflectances provide useful information on snowpack surface properties, but are affected by important gaps of coverage e.g. due to clouds. Likewise, in-situ observations of the height of snow (HS) are reliable but with a limited representativeness and spatial coverage. On the other hand, detailed snowpack models can simulate the complete snow stratigraphy virtually anywhere, but they suffer from large uncertainties in their meteorological inputs and their representation of snow physical processes. Thus, data assimilation offers an unique opportunity to merge information from observations and models into a better estimate of the snowpack state. The aim of this thesis is to investigate the potential for satellite reflectances and in-situ HS to improve snowpack simulations in mountainous areas via assimilation. In this work, we will try to address the following questions: • Can we use observations of snowpack reflectance from satellites to better constrain snowpack modelling over mountainous areas? • Can we propagate information on the snowpack state from observed areas to unobserved areas with data assimilation? • To what extent can we use in-situ observations of HS to improve snowpack simulations in their neighborhood? We opt for a sequential ensemble data assimilation strategy, using the Particle Filter algorithm (PF), which is well adapted to detailed snowpack models. An ensemble modelling system is built by forcing ESCROC, a multiphysics ensemble of snowpack models, with an ensemble of stochastic perturbations on SAFRAN meteorological analyses. This design enables the modelling system to account for its main sources of uncertainty. Several innovative versions of the PF are developed in order to assimilate large numbers of observations and propagate information to unobserved areas while avoiding PF degeneracy, an issue arising when the number of observations increases. The potential for assimilation of satellite reflectance is assessed by comparing MODIS observations with simulated reflectances. We conduct twin experiments assimilating partial observations to analyse the ability of the PF to propagate information into unobserved areas. Finally, we assess the added value of the assimilation of HS observations from an observation network over the Alps and Pyrenees using a Leave-One-Out approach. Results show that the proposed methodology is efficient to tackle PF degeneracy while managing to propagate information across topographic conditions. Though standard MODIS observations cannot be directly assimilated because they are biased, the assimilation of HS observations have some added value where modelling errors are systematic and larger thaniv natural variability. This work is a novel contribution to improve the assimilation of other satellite products and in-situ HS observations in a spatialised context, a significant qualitative leap for avalanche forecasting and hydrological studies

    Application des approches d'ensemble à l'assimilation de données télédétectées dans des simulations numériques spatialisées du manteau neigeux saisonnier

    No full text
    Understanding mountain snowpack variability is key to anticipate avalanche hazards and monitor water resources. On the one hand, remotely-sensed and in-situ observations of snow have a limited spatial and temporal coverage. For instance, visible and near infrared satellite reflectances provide useful information on snowpack surface properties, but are affected by important gaps of coverage e.g. due to clouds. Likewise, in-situ observations of the height of snow (HS) are reliable but with a limited representativeness and spatial coverage. On the other hand, detailed snowpack models can simulate the complete snow stratigraphy virtually anywhere, but they suffer from large uncertainties in their meteorological inputs and their representation of snow physical processes. Thus, data assimilation offers an unique opportunity to merge information from observations and models into a better estimate of the snowpack state. The aim of this thesis is to investigate the potential for satellite reflectances and in-situ HS to improve snowpack simulations in mountainous areas via assimilation. In this work, we will try to address the following questions: • Can we use observations of snowpack reflectance from satellites to better constrain snowpack modelling over mountainous areas? • Can we propagate information on the snowpack state from observed areas to unobserved areas with data assimilation? • To what extent can we use in-situ observations of HS to improve snowpack simulations in their neighborhood? We opt for a sequential ensemble data assimilation strategy, using the Particle Filter algorithm (PF), which is well adapted to detailed snowpack models. An ensemble modelling system is built by forcing ESCROC, a multiphysics ensemble of snowpack models, with an ensemble of stochastic perturbations on SAFRAN meteorological analyses. This design enables the modelling system to account for its main sources of uncertainty. Several innovative versions of the PF are developed in order to assimilate large numbers of observations and propagate information to unobserved areas while avoiding PF degeneracy, an issue arising when the number of observations increases. The potential for assimilation of satellite reflectance is assessed by comparing MODIS observations with simulated reflectances. We conduct twin experiments assimilating partial observations to analyse the ability of the PF to propagate information into unobserved areas. Finally, we assess the added value of the assimilation of HS observations from an observation network over the Alps and Pyrenees using a Leave-One-Out approach. Results show that the proposed methodology is efficient to tackle PF degeneracy while managing to propagate information across topographic conditions. Though standard MODIS observations cannot be directly assimilated because they are biased, the assimilation of HS observations have some added value where modelling errors are systematic and larger thaniv natural variability. This work is a novel contribution to improve the assimilation of other satellite products and in-situ HS observations in a spatialised context, a significant qualitative leap for avalanche forecasting and hydrological studies.La connaissance de la variabilité du manteau neigeux est indispensable pour la prévision du risque d'avalanche ainsi que pour le suivi de la ressource en eau. D'une part, la couverture spatio-temporelle des observations in-situ et télédétectées de la neige est limitée. Les réflectances satellites dans le visible et le proche infra-rouge fournissent de précieuses informations sur les propriétés de surface du manteau neigeux mais ont une couverture par- cellaire, notamment à cause des nuages. De la même manière, les observations in-situ de hauteur de neige (HN) ont une représentativité et une couverture spatiale limitées. D'autre part, les modèles détaillés du manteau neigeux offrent la possibilité de simuler la stratigraphie complète du manteau neigeux en tout point. Cependant ceux-ci souffrent d'importantes erreurs provenant de leurs forçages météorologiques ainsi que de leur propre représentation de la physique de la neige. Dans ce contexte, l'assimilation de données, qui permet d'intégrer l'information provenant des observations dans les simulations de ces modèles, semble prometteuse. L'objectif de cette thèse est d'évaluer la capacité de l'assimilation de réflectances satellites et d'observations in-situ de HN à améliorer la simulation du manteau neigeux en montagne. Les problématiques suivantes seront donc abordées : • Les observations de réflectances satellites de la neige permettent-elles de mieux contraindre la modélisation du manteau neigeux en montagne ? • Peut-on propager de l'information sur l'état du manteau neigeux depuis des zones observées vers des zones non-observées ? • Dans quelle mesure peut-on utiliser les observations in-situ de HN pour améliorer les simulations du manteau neigeux dans leur voisinage ? Nous avons choisi d'utiliser une approche d'assimilation de données ensembliste séquentielle, untilisant le Filtre Particulaire (FP) qui est adapté aux modèles détaillés du manteau neigeux. Le système de modélisation d'ensemble est basé sur ESCROC, un ensemble de modèles multi-physiques du manteau neigeux, forcé par un ensemble de perturbations stochastiques des analyses météorologiques SAFRAN. Cette conception permet à la chaîne de modélisation de tenir compte de ses principales sources d'incertitude. Plusieurs versions innovantes du FP ont été développées afin d'assimiler un grand nombre d'observations simultanément, tout en évitant la dégénérescence du FP, un problème apparaissant lorsque le nombre d'observations augmente.(Palchetti et al., 2021). Le potentiel de l'assimilation de réflectances satellites a été estimé en comparant des observations du capteur satellite MODIS avec des sorties de simulations. Des expériences jumelles assimilant des observations partielles nous ont permis d'analyser la capacité du FP à propager de l'information vers des zones non-observées. Enfin, nous avons évalué l'apport de l'assimilation d'un réseau d'observations de HN couvrant les Alpes et les Pyrénées par une approche de validation croisée de type "un contre tous". Nos résultats montrent que l'approche proposée permet d'éviter la dégénérescence du FP tout en réussissant à propager de l'information entre différentes conditions topographiques. Un biais a été mis en evidence dans les observations standard MODIS, qui empêche leur assimilation directe. En revanche, nous avons mis en valeur le bénéfice de l'assimilation de HN dans les zones où les erreurs de modélisation sont systématiques et dépassent la variabilité naturelle. Ce travail ouvre la voie à l'assimilation d'autres produits satellitaires ainsi que d'observations in-situ de HS dans un contexte spatialisé, représentant un saut qualitatif important pour la prévision du risque d'avalanche et l'hydrologie de montagne

    Application des approches d'ensemble à l'assimilation de données télédétectées dans des simulations numériques spatialisées du manteau neigeux saisonnier

    No full text
    Understanding mountain snowpack variability is key to anticipate avalanche hazards and monitor water resources. On the one hand, remotely-sensed and in-situ observations of snow have a limited spatial and temporal coverage. For instance, visible and near infrared satellite reflectances provide useful information on snowpack surface properties, but are affected by important gaps of coverage e.g. due to clouds. Likewise, in-situ observations of the height of snow (HS) are reliable but with a limited representativeness and spatial coverage. On the other hand, detailed snowpack models can simulate the complete snow stratigraphy virtually anywhere, but they suffer from large uncertainties in their meteorological inputs and their representation of snow physical processes. Thus, data assimilation offers an unique opportunity to merge information from observations and models into a better estimate of the snowpack state. The aim of this thesis is to investigate the potential for satellite reflectances and in-situ HS to improve snowpack simulations in mountainous areas via assimilation. In this work, we will try to address the following questions: • Can we use observations of snowpack reflectance from satellites to better constrain snowpack modelling over mountainous areas? • Can we propagate information on the snowpack state from observed areas to unobserved areas with data assimilation? • To what extent can we use in-situ observations of HS to improve snowpack simulations in their neighborhood? We opt for a sequential ensemble data assimilation strategy, using the Particle Filter algorithm (PF), which is well adapted to detailed snowpack models. An ensemble modelling system is built by forcing ESCROC, a multiphysics ensemble of snowpack models, with an ensemble of stochastic perturbations on SAFRAN meteorological analyses. This design enables the modelling system to account for its main sources of uncertainty. Several innovative versions of the PF are developed in order to assimilate large numbers of observations and propagate information to unobserved areas while avoiding PF degeneracy, an issue arising when the number of observations increases. The potential for assimilation of satellite reflectance is assessed by comparing MODIS observations with simulated reflectances. We conduct twin experiments assimilating partial observations to analyse the ability of the PF to propagate information into unobserved areas. Finally, we assess the added value of the assimilation of HS observations from an observation network over the Alps and Pyrenees using a Leave-One-Out approach. Results show that the proposed methodology is efficient to tackle PF degeneracy while managing to propagate information across topographic conditions. Though standard MODIS observations cannot be directly assimilated because they are biased, the assimilation of HS observations have some added value where modelling errors are systematic and larger thaniv natural variability. This work is a novel contribution to improve the assimilation of other satellite products and in-situ HS observations in a spatialised context, a significant qualitative leap for avalanche forecasting and hydrological studies.La connaissance de la variabilité du manteau neigeux est indispensable pour la prévision du risque d'avalanche ainsi que pour le suivi de la ressource en eau. D'une part, la couverture spatio-temporelle des observations in-situ et télédétectées de la neige est limitée. Les réflectances satellites dans le visible et le proche infra-rouge fournissent de précieuses informations sur les propriétés de surface du manteau neigeux mais ont une couverture par- cellaire, notamment à cause des nuages. De la même manière, les observations in-situ de hauteur de neige (HN) ont une représentativité et une couverture spatiale limitées. D'autre part, les modèles détaillés du manteau neigeux offrent la possibilité de simuler la stratigraphie complète du manteau neigeux en tout point. Cependant ceux-ci souffrent d'importantes erreurs provenant de leurs forçages météorologiques ainsi que de leur propre représentation de la physique de la neige. Dans ce contexte, l'assimilation de données, qui permet d'intégrer l'information provenant des observations dans les simulations de ces modèles, semble prometteuse. L'objectif de cette thèse est d'évaluer la capacité de l'assimilation de réflectances satellites et d'observations in-situ de HN à améliorer la simulation du manteau neigeux en montagne. Les problématiques suivantes seront donc abordées : • Les observations de réflectances satellites de la neige permettent-elles de mieux contraindre la modélisation du manteau neigeux en montagne ? • Peut-on propager de l'information sur l'état du manteau neigeux depuis des zones observées vers des zones non-observées ? • Dans quelle mesure peut-on utiliser les observations in-situ de HN pour améliorer les simulations du manteau neigeux dans leur voisinage ? Nous avons choisi d'utiliser une approche d'assimilation de données ensembliste séquentielle, untilisant le Filtre Particulaire (FP) qui est adapté aux modèles détaillés du manteau neigeux. Le système de modélisation d'ensemble est basé sur ESCROC, un ensemble de modèles multi-physiques du manteau neigeux, forcé par un ensemble de perturbations stochastiques des analyses météorologiques SAFRAN. Cette conception permet à la chaîne de modélisation de tenir compte de ses principales sources d'incertitude. Plusieurs versions innovantes du FP ont été développées afin d'assimiler un grand nombre d'observations simultanément, tout en évitant la dégénérescence du FP, un problème apparaissant lorsque le nombre d'observations augmente.(Palchetti et al., 2021). Le potentiel de l'assimilation de réflectances satellites a été estimé en comparant des observations du capteur satellite MODIS avec des sorties de simulations. Des expériences jumelles assimilant des observations partielles nous ont permis d'analyser la capacité du FP à propager de l'information vers des zones non-observées. Enfin, nous avons évalué l'apport de l'assimilation d'un réseau d'observations de HN couvrant les Alpes et les Pyrénées par une approche de validation croisée de type "un contre tous". Nos résultats montrent que l'approche proposée permet d'éviter la dégénérescence du FP tout en réussissant à propager de l'information entre différentes conditions topographiques. Un biais a été mis en evidence dans les observations standard MODIS, qui empêche leur assimilation directe. En revanche, nous avons mis en valeur le bénéfice de l'assimilation de HN dans les zones où les erreurs de modélisation sont systématiques et dépassent la variabilité naturelle. Ce travail ouvre la voie à l'assimilation d'autres produits satellitaires ainsi que d'observations in-situ de HS dans un contexte spatialisé, représentant un saut qualitatif important pour la prévision du risque d'avalanche et l'hydrologie de montagne

    Application des approches d'ensemble à l'assimilation de données télédétectées dans des simulations numériques spatialisées du manteau neigeux saisonnier

    No full text
    Understanding mountain snowpack variability is key to anticipate avalanche hazards and monitor water resources. On the one hand, remotely-sensed and in-situ observations of snow have a limited spatial and temporal coverage. For instance, visible and near infrared satellite reflectances provide useful information on snowpack surface properties, but are affected by important gaps of coverage e.g. due to clouds. Likewise, in-situ observations of the height of snow (HS) are reliable but with a limited representativeness and spatial coverage. On the other hand, detailed snowpack models can simulate the complete snow stratigraphy virtually anywhere, but they suffer from large uncertainties in their meteorological inputs and their representation of snow physical processes. Thus, data assimilation offers an unique opportunity to merge information from observations and models into a better estimate of the snowpack state. The aim of this thesis is to investigate the potential for satellite reflectances and in-situ HS to improve snowpack simulations in mountainous areas via assimilation. In this work, we will try to address the following questions: • Can we use observations of snowpack reflectance from satellites to better constrain snowpack modelling over mountainous areas? • Can we propagate information on the snowpack state from observed areas to unobserved areas with data assimilation? • To what extent can we use in-situ observations of HS to improve snowpack simulations in their neighborhood? We opt for a sequential ensemble data assimilation strategy, using the Particle Filter algorithm (PF), which is well adapted to detailed snowpack models. An ensemble modelling system is built by forcing ESCROC, a multiphysics ensemble of snowpack models, with an ensemble of stochastic perturbations on SAFRAN meteorological analyses. This design enables the modelling system to account for its main sources of uncertainty. Several innovative versions of the PF are developed in order to assimilate large numbers of observations and propagate information to unobserved areas while avoiding PF degeneracy, an issue arising when the number of observations increases. The potential for assimilation of satellite reflectance is assessed by comparing MODIS observations with simulated reflectances. We conduct twin experiments assimilating partial observations to analyse the ability of the PF to propagate information into unobserved areas. Finally, we assess the added value of the assimilation of HS observations from an observation network over the Alps and Pyrenees using a Leave-One-Out approach. Results show that the proposed methodology is efficient to tackle PF degeneracy while managing to propagate information across topographic conditions. Though standard MODIS observations cannot be directly assimilated because they are biased, the assimilation of HS observations have some added value where modelling errors are systematic and larger thaniv natural variability. This work is a novel contribution to improve the assimilation of other satellite products and in-situ HS observations in a spatialised context, a significant qualitative leap for avalanche forecasting and hydrological studies.La connaissance de la variabilité du manteau neigeux est indispensable pour la prévision du risque d'avalanche ainsi que pour le suivi de la ressource en eau. D'une part, la couverture spatio-temporelle des observations in-situ et télédétectées de la neige est limitée. Les réflectances satellites dans le visible et le proche infra-rouge fournissent de précieuses informations sur les propriétés de surface du manteau neigeux mais ont une couverture par- cellaire, notamment à cause des nuages. De la même manière, les observations in-situ de hauteur de neige (HN) ont une représentativité et une couverture spatiale limitées. D'autre part, les modèles détaillés du manteau neigeux offrent la possibilité de simuler la stratigraphie complète du manteau neigeux en tout point. Cependant ceux-ci souffrent d'importantes erreurs provenant de leurs forçages météorologiques ainsi que de leur propre représentation de la physique de la neige. Dans ce contexte, l'assimilation de données, qui permet d'intégrer l'information provenant des observations dans les simulations de ces modèles, semble prometteuse. L'objectif de cette thèse est d'évaluer la capacité de l'assimilation de réflectances satellites et d'observations in-situ de HN à améliorer la simulation du manteau neigeux en montagne. Les problématiques suivantes seront donc abordées : • Les observations de réflectances satellites de la neige permettent-elles de mieux contraindre la modélisation du manteau neigeux en montagne ? • Peut-on propager de l'information sur l'état du manteau neigeux depuis des zones observées vers des zones non-observées ? • Dans quelle mesure peut-on utiliser les observations in-situ de HN pour améliorer les simulations du manteau neigeux dans leur voisinage ? Nous avons choisi d'utiliser une approche d'assimilation de données ensembliste séquentielle, untilisant le Filtre Particulaire (FP) qui est adapté aux modèles détaillés du manteau neigeux. Le système de modélisation d'ensemble est basé sur ESCROC, un ensemble de modèles multi-physiques du manteau neigeux, forcé par un ensemble de perturbations stochastiques des analyses météorologiques SAFRAN. Cette conception permet à la chaîne de modélisation de tenir compte de ses principales sources d'incertitude. Plusieurs versions innovantes du FP ont été développées afin d'assimiler un grand nombre d'observations simultanément, tout en évitant la dégénérescence du FP, un problème apparaissant lorsque le nombre d'observations augmente.(Palchetti et al., 2021). Le potentiel de l'assimilation de réflectances satellites a été estimé en comparant des observations du capteur satellite MODIS avec des sorties de simulations. Des expériences jumelles assimilant des observations partielles nous ont permis d'analyser la capacité du FP à propager de l'information vers des zones non-observées. Enfin, nous avons évalué l'apport de l'assimilation d'un réseau d'observations de HN couvrant les Alpes et les Pyrénées par une approche de validation croisée de type "un contre tous". Nos résultats montrent que l'approche proposée permet d'éviter la dégénérescence du FP tout en réussissant à propager de l'information entre différentes conditions topographiques. Un biais a été mis en evidence dans les observations standard MODIS, qui empêche leur assimilation directe. En revanche, nous avons mis en valeur le bénéfice de l'assimilation de HN dans les zones où les erreurs de modélisation sont systématiques et dépassent la variabilité naturelle. Ce travail ouvre la voie à l'assimilation d'autres produits satellitaires ainsi que d'observations in-situ de HS dans un contexte spatialisé, représentant un saut qualitatif important pour la prévision du risque d'avalanche et l'hydrologie de montagne

    Methyl jasmonate/ethephon cotreatment synergistically induces stilbene production in "Vitis vinifera" cell suspensions but fails to trigger resistance to "Erysiphe necator"

    No full text
    Aim: The aim of the present investigation was to determine whether methyl jasmonate and ethylene could synergistically induce grapevine foliar cuttings (Vitis vinifera) defense mechanisms and enhance resistance to Erysiphe necator. Methods and results: We cotreated grapevine foliar cuttings (Cabernet- Sauvignon) with ethylene-releasing ethephon in association with methyl jasmonate. However, this cotreatment did not improve resistance to powdery mildew induced by MeJA or ethephon, alone. Quantitative PCR analysis performed on grape cell suspensions showed that the association ethephon/MeJA triggered an enhancement of phytoalexin biosynthesis by synergistically inducing PAL and STS genes. This gene expression was correlated with accumulation of stilbenes (antimicrobial compounds), assessed by HPLC analysis. However, ethephon seemed to inhibit MeJA-dependent induction of PR protein gene expression mainly for the first eighteen hours. Significance and impact of study: Since methyl jasmonate and ethephon can separately enhance grapevine resistance to Erysiphe necator, it was interesting to study the effect of the association of the two molecules on it. Although we observed a synergistic effect on phytoalexin production, no improved resistance against the fungus was obtained. These results can be exploited for the development of new pest control strategies in vineyard

    Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network

    No full text
    International audienceThe mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imperfectly represent this variability, because of uncertain meteorological inputs, physical parameterizations, and unresolved terrain features. In situ observations of the height of snow (HS), despite their limited representativeness, could help constrain intermediate and large-scale modeling errors by means of data assimilation. In this work, we assimilate HS observations from an in situ network of 295 stations covering the French Alps, Pyrenees, and Andorra, over the period 2009–2019. In view of assimilating such observations into a spatialized snow cover modeling framework, we investigate whether such observations can be used to correct neighboring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow cover modeling, based on a particle filter suited to the propagation of information from observed to unobserved areas. This ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also proposes various localization strategies to assimilate snow observations. These approaches are evaluated in a leave-one-out setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimilation. Results show that an intermediate localization radius of 35–50 km yields a slightly lower root mean square error (RMSE), and a better spread–skill than the strategy of assimilating all the observations from a whole mountain range. Significant continuous ranked probability score (CRPS) improvements of about 13 % are obtained in the areas where the open-loop modeling errors are the largest, e.g., the Haute-Ariège, Andorra, and the extreme southern Alps. Over these areas, weather station observations are generally sparser, resulting in more uncertain meteorological analyses and, therefore, snow simulations. In situ HS observations thus show an interesting complementarity with meteorological observations to better constrain snow cover simulations over large areas

    Towards the assimilation of satellite reflectance into semi-distributed ensemble snowpack simulations

    No full text
    Uncertainties of snowpack models and of their meteorological forcings limit their use by avalanche hazard forecasters, or for glaciological and hydrological studies. The spatialized simulations currently available for avalanche hazard forecasting are only assimilating sparse meteorological observations. As suggested by recent studies, their forecasting skills could be significantly improved by assimilating satellite data such as snow reflectances from satellites in the visible and the near-infrared spectra. Indeed, these data can help constrain the microstructural properties of surface snow and light absorbing impurities content, which in turn affect the surface energy and mass budgets. This paper investigates the prerequisites of satellite data assimilation into a detailed snowpack model. An ensemble version of Meteo-France operational snowpack forecasting system (named S2M) was built for this study. This operational system runs on topographic classes instead of grid points, so-called semi-distributed approach. Each class corresponds to one of the 23 mountain massifs of the French Alps (about 1000km^{2} each), an altitudinal range (by step of 300m) and aspect (by step of 45{\deg}). We assess the feasability of satellite data assimilation in such a semi-distributed geometry. Ensemble simulations are compared with satellite observations from MODIS and Sentinel-2, and with in-situ reflectance observations. The study focuses on the 2013-2014 and 2016-2017 winters in the Grandes-Rousses massif. Substantial Pearson R^{2} correlations (0.75-0.90) of MODIS observations with simulations are found over the domain. This suggests that assimilating it could have an impact on the spatialized snowpack forecasting system. However, observations contain significant biases (0.1-0.2 in reflectance) which prevent their direct assimilation. MODIS spectral band ratios seem to be much less biased
    corecore