55 research outputs found
Pultenaea williamsii (Fabaceae: Mirbelieae), a new species endemic to the New England Tableland Bioregion of New South Wales
Pultenaea williamsii I.Telford, Clugston & R.L.Barrett (Fabaceae, Faboideae, Mirbelieae), endemic to the New England Bioregion, New South Wales, Australia, is described as new, segregated from the P. flexilisβP. juniperinaβP. blakelyi species assemblage. Its distribution is mapped, and habitat and conservation status discussed
Conservation genomics of an Australian cycad, cycas calcicola and the absence of key genotypes in botanic gardens
Understanding the genetic diversity of wild populations is fundamental to conserving species in-situ and ex-situ. To aid conservation plans and to inform ex-situ conservation, we examined the genetic diversity of the cycad Cycas calcicola (Cycadaceae). Samples were collected from wild populations in the Litchfield National Park and Katherine regions in the Northern Territory, Australia. Additional samples were obtained from botanic garden plants that were originally collected in the Katherine region, Daly River and Spirit Hills in the Northern Territory, Australia. Using RADseq we recovered 2271 informative genome-wide SNPs, revealing low to moderate levels of gene diversity (uHe = 0.037 to 0.135), very low levels of gene flow, and significant levels of inbreeding (mean FIS = 0.491). Population structure and multivariate analysis showed that populations fall into two genetic groups (Katherine vs Litchfield + Daly River + Spirit Hills). Genetic differentiation was twice as high between populations of the Katherine and Litchfield regions (FST ~ 0.1) compared to within these two regions (FST ~ 0.05). Increasing population fragmentation together with high levels of inbreeding and very little gene flow are concerning for the future adaptability of this species. The results indicated that the ex-situ collections (1) had significantly lower genetic diversity than the wild populations, and (2) only partly capture the genetic diversity present, particularly because the Litchfield National Park populations are not represented. We recommend that ex-situ collections be expanded to incorporate the genetic diversity found in Litchfield National Park and to increase the number of representatives from Daly River/Spirit Hills, and that in-situ populations from the Katherine and Greater Litchfield regions be conserved as separate management units
RADseq as a valuable tool for plants with large genomes-a case study in cycads
Full genome sequencing of organisms with large and complex genomes is intractable and cost ineffective under most research budgets. Cycads (Cycadales) represent one of the oldest lineages of the extant seed plants and, partly due to their age, have incredibly large genomes up to ~60Β Gbp. Restriction site-associated DNA sequencing (RADseq) offers an approach to find genome-wide informative markers and has proven to be effective with both model and nonmodel organisms. We tested the application of RADseq using ezRAD across all 10 genera of the Cycadales including an example data set of Cycas calcicola representing 72 samples from natural populations. Using previously available plastid and mitochondrial genomes as references, reads were mapped recovering plastid and mitochondrial genome regions and nuclear markers for all of the genera. De novo assembly generated up to 138,407 high-depth clusters and up to 1,705 phylogenetically informative loci for the genera, and 4,421 loci for the example assembly of C. calcicola. The number of loci recovered by de novo assembly was lower than previous RADseq studies, yet still sufficient for downstream analysis. However, the number of markers could be increased by relaxing our assembly parameters, especially for the C. calcicola data set. Our results demonstrate the successful application of RADseq across the Cycadales to generate a large number of markers for all genomic compartments, despite the large number of plastids present in a typical plant cell. Our modified protocol was adapted to be applied to cycads and other organisms with large genomes to yield many informative genome-wide markers
Optimizing Concussion Care Seeking: Using Machine Learning to Predict Delayed Concussion Reporting
BACKGROUND: Early medical attention after concussion may minimize symptom duration and burden; however, many concussions are undiagnosed or have a delay in diagnosis after injury. Many concussion symptoms (eg, headache, dizziness) are not visible, meaning that early identification is often contingent on individuals reporting their injury to medical staff. A fundamental understanding of the types and levels of factors that explain when concussions are reported can help identify promising directions for intervention.
PURPOSE: To identify individual and institutional factors that predict immediate (vs delayed) injury reporting.
STUDY DESIGN: Case-control study; Level of evidence, 3.
METHODS: This study was a secondary analysis of data from the Concussion Assessment, Research and Education (CARE) Consortium study. The sample included 3213 collegiate athletes and military service academy cadets who were diagnosed with a concussion during the study period. Participants were from 27 civilian institutions and 3 military institutions in the United States. Machine learning techniques were used to build models predicting who would report an injury immediately after a concussive event (measured by an athletic trainer denoting the injury as being reported "immediately" or "at a delay"), including both individual athlete/cadet and institutional characteristics.
RESULTS: In the sample as a whole, combining individual factors enabled prediction of reporting immediacy, with mean accuracies between 55.8% and 62.6%, depending on classifier type and sample subset; adding institutional factors improved reporting prediction accuracies by 1 to 6 percentage points. At the individual level, injury-related altered mental status and loss of consciousness were most predictive of immediate reporting, which may be the result of observable signs leading to the injury report being externally mediated. At the institutional level, important attributes included athletic department annual revenue and ratio of athletes to athletic trainers.
CONCLUSION: Further study is needed on the pathways through which institutional decisions about resource allocation, including decisions about sports medicine staffing, may contribute to reporting immediacy. More broadly, the relatively low accuracy of the machine learning models tested suggests the importance of continued expansion in how reporting is understood and facilitated
The Prevalence and Influence of New or Worsened Neck Pain After a Sport-Related Concussion in Collegiate Athletes: A Study From the CARE Consortium
BACKGROUND: Neck pain in a concussion population is an emerging area of study that has been shown to have a negative influence on recovery. This effect has not yet been studied in collegiate athletes.
HYPOTHESIS: New or worsened neck pain is common after a concussion (>30%), negatively influences recovery, and is associated with patient sex and level of contact in sport.
STUDY DESIGN: Cohort study; Level of evidence, 2.
METHODS: Varsity-level athletes from 29 National Collegiate Athletic Association member institutions as well as nonvarsity sport athletes at military service academies were eligible for enrollment. Participants completed a preseason baseline assessment and follow-up assessments at 6 and 24 to 48 hours after a concussion, when they were symptom-free, and when they returned to unrestricted play. Data collection occurred between January 2014 and September 2018.
RESULTS: A total of 2163 injuries were studied. New or worsened neck pain was reported with 47.0% of injuries. New or worsened neck pain was associated with patient sex (higher in female athletes), an altered mental status after the injury, the mechanism of injury, and what the athlete collided with. The presence of new/worsened neck pain was associated with delayed recovery. Those with new or worsened neck pain had 11.1 days of symptoms versus 8.8 days in those without (P < .001). They were also less likely to have a resolution of self-reported symptoms in β€7 days (P < .001). However, the mean duration of the return-to-play protocol was not significantly different for those with new or worsened neck pain (7.5 Β± 7.7 days) than those without (7.4 Β± 8.3 days) (P = .592).
CONCLUSION: This novel study shows that neck pain was common in collegiate athletes sustaining a concussion, was influenced by many factors, and negatively affected recovery
Relationship Between the King-Devick Test and Commonly Used Concussion Tests at Baseline
Context: Comprehensive assessments are recommended to evaluate sport-related concussion (SRC). The degree to which the King-Devick (KD) test adds novel information to an SRC evaluation is unknown.
Objective: To describe relationships at baseline among the KD and other SRC assessments and explore whether the KD provides unique information to a multimodal baseline concussion assessment.
Design: Cross-sectional study.
Setting: Five National Collegiate Athletic Association institutions participating in the Concussion Assessment, Research and Education (CARE) Consortium.
Patients or other participants: National Collegiate Athletic Association student-athletes (N = 2258, age = 20 Β± 1.5 years, 53.0% male, 68.9% white) in 11 men's and 13 women's sports.
Main outcome measure(s): Participants completed baseline assessments on the KD and (1) the Symptom Inventory of the Sport Concussion Assessment Tool-3rd edition, (2) the Brief Symptom Inventory-18, (3) the Balance Error Scoring System, (4) the Standardized Assessment of Concussion (SAC), (5) the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test battery, and (6) the Vestibular/Ocular Motor Screening tool during their first year in CARE. Correlation coefficients between the KD and the 6 other concussion assessments in isolation were determined. Assessments with Ο magnitude >0.1 were included in a multivariate linear regression analysis to evaluate their relative association with the KD.
Results: Scores for SAC concentration, ImPACT visual motor speed, and ImPACT reaction time were correlated with the KD (Ο = -0.216, -0.276, and 0.164, respectively) and were thus included in the regression model, which explained 16.8% of the variance in baseline KD time (P < .001, Cohen f2 = 0.20). Better SAC concentration score (Ξ² = -.174, P < .001), ImPACT visual motor speed (Ξ² = -.205, P < .001), and ImPACT reaction time (Ξ² = .056, P = .020) were associated with faster baseline KD performance, but the effect sizes were small.
Conclusions: Better performance on cognitive measures involving concentration, visual motor speed, and reaction time was weakly associated with better baseline KD performance. Symptoms, psychological distress, balance, and vestibular-oculomotor provocation were unrelated to KD performance at baseline. The findings indicate limited overlap at baseline among the CARE SRC assessments and the KD
Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics
4-Hydroxynonenal (4-HNE) is a reactive Ξ±,Ξ²-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 Β΅M to Kd1β=β0.395 Β΅M and Kd2β=β34.20 Β΅M. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΞTmβ=β5.44Β°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD
Bifactor Model of the Sport Concussion Assessment Tool Symptom Checklist: Replication and Invariance Across Time in the CARE Consortium Sample
Background: Identifying separate dimensions of concussion symptoms may inform a precision medicine approach to treatment. It was previously reported that a bifactor model identified distinct acute postconcussion symptom dimensions.
Purpose: To replicate previous findings of a bifactor structure of concussion symptoms in the Concussion Assessment Research and Education (CARE) Consortium sample, examine measurement invariance from pre- to postinjury, and evaluate whether factors are associated with other clinical and biomarker measures.
Study design: Cohort study (Diagnosis); Level of evidence, 2.
Methods: Collegiate athletes were prospectively evaluated using the Sport Concussion Assessment Tool-3 (SCAT-3) during preseason (N = 31,557); 2789 were followed at <6 hours and 24 to 48 hours after concussion. Item-level SCAT-3 ratings were analyzed using exploratory and confirmatory factor analyses. Bifactor and higher-order models were compared for their fit and interpretability. Measurement invariance tested the stability of the identified factor structure across time. The association between factors and criterion measures (clinical and blood-based markers of concussion severity, symptom duration) was evaluated.
Results: The optimal structure for each time point was a 7-factor bifactor model: a General factor, on which all items loaded, and 6 specific factors-Vestibulo-ocular, Headache, Sensory, Fatigue, Cognitive, and Emotional. The model manifested strict invariance across the 2 postinjury time points but only configural invariance from baseline to postinjury. From <6 to 24-48 hours, some dimensions increased in severity (Sensory, Fatigue, Emotional), while others decreased (General, Headache, Vestibulo-ocular). The factors correlated with differing clinical and biomarker criterion measures and showed differing patterns of association with symptom duration at different time points.
Conclusion: Bifactor modeling supported the predominant unidimensionality of concussion symptoms while revealing multidimensional properties, including a large dominant General factor and 6 independent factors: Headache, Vestibulo-ocular, Sensory, Cognitive, Fatigue, and Emotional. Unlike the widely used SCAT-3 symptom severity score, which declines gradually after injury, the bifactor model revealed separable symptom dimensions that have distinct trajectories in the acute postinjury period and different patterns of association with other markers of injury severity and outcome.
Clinical relevance: The SCAT-3 total score remains a valuable, robust index of overall concussion symptom severity, and the specific factors identified may inform management strategies. Because some symptom dimensions continue to worsen in the first 24 to 48 hours after injury (ie, Sensory, Fatigue, Emotional), routine follow-up in this time frame may be valuable to ensure that symptoms are managed effectively
Do environmental factors affect the taxonomic reliability of leaf cuticular micromorphological characters? : a case study in Podocarpaceae
Leaf cuticle micromorphology has been cited as an important set of taxonomic characters in gymnosperms, but previous studies have largely been based on small sample sizes. The premise of this study was to understand whether external factors affect cuticular micromorphology of Podocarpaceae. Two example species, Prumnopitys andina and Podocarpus salignus, were studied. Of 21 sampled characters, nine (c.43% of the total) were visually assessed as being moderately reliable or highly reliable for taxonomic discrimination for both species, with an additional six (c.29%) being moderately reliable or highly reliable for only one or other of the example species, and six characters (c.29%) unreliable for both. Seven of the most variable stomatal characters were selected for further analysis to establish whether environmental factors affect them. The relationship between these seven stomatal characters, the environment and climate was analysed using the R 'vegan' package and climate data gathered from WorldClim. Our results showed that both species had larger stomata in moist and shady conditions, and a higher density of (smaller) stomata in sunny and drier conditions. An additional novel finding was the presence of stomata on the adaxial leaf surface in 46% of samples of Prumnopitys andina: the first record of adaxial stomata in this species, highlighting the necessity of studying multiple samples of a given species. In conclusion, these results indicate that larger sample sizes than have hitherto been employed in cuticle micromorphological studies are necessary to fully document the amount of phenotypic variation that exists
- β¦