74 research outputs found

    Short-term endothelin receptor blockade with tezosentan has both immediate and long-term beneficial effects in rats with myocardial infarction

    Get PDF
    AbstractObjectivesWe investigated the effects of short-term tezosentan treatment on cardiac function, pulmonary edema and long-term evolution of heart failure (HF) in a rat model of myocardial infarction (MI).BackgroundEndothelin (ET) may play a major role in the progression from MI to HF. Tezosentan is a new dual ETA/ETBreceptor antagonist.MethodsRats were subjected to coronary artery ligation and were treated with either vehicle or tezosentan (10 mg/kg IV bolus) at 1 h and 24 h after MI. Cardiac hemodynamics and lung weight were measured at 48 h after MI. Survival was assessed over a five-month period.ResultsAt 48 h after ligation, vehicle-treated rats developed HF, as evidenced by a marked increase in left ventricular end-diastolic pressure (LVEDP), reduction in dP/dtmaxand mean arterial pressure (MAP), and development of pulmonary edema. Tezosentan treatment attenuated the increase in LVEDP and in lung weight and slightly reduced MAP without affecting dP/dtmax. Infarct size was not modified by tezosentan. Despite the fact that treatment with tezosentan was stopped after 24 h, the initial tezosentan administration significantly reduced cardiac hypertrophy (22%) and decreased mortality by 51% at five months (50% survival vs. 19% survival in vehicle-treated rats, p < 0.001).ConclusionsTezosentan administered during the first day after MI in rats, in addition to improving acutely hemodynamic conditions, markedly increases long-term survival. This increase is associated with a decrease of pulmonary edema and prevention of cardiac hypertrophy. Tezosentan could be a safe and useful therapeutic agent in the prevention and treatment of ischemic HF

    Differential Effects of Selexipag and Prostacyclin Analogs in Rat Pulmonary Artery

    Full text link

    The endothelin antagonist bosentan: Hemodynamic effects during normoxia and hypoxic pulmonary hypertension in pigs

    Get PDF
    AbstractIn this study, we investigated the hemodynamic effects and receptor-blocking properties of the nonselective endothelin antagonist bosentan in pigs during normoxia and acute hypoxia. Hypoxic pulmonary hypertension was induced by decreasing the fraction of inhaled oxygen to 0.1. In a control group of pigs, hemodynamic parameters proved to be stable through 2 hours of hypoxia. Infusions of endothelin-1, endothelin-3, and sarafotoxin 6c into the pulmonary artery resulted in pulmonary and systemic vasoconstriction during normoxia, whereas endothelin administration during hypoxic pulmonary hypertension resulted in pulmonary vasodilation. After administration of bosentan, the vasopressor effect of endothelin-1 during normoxia was significantly attenuated and the pulmonary vasodilatory effect of endothelin-1 during hypoxia was reduced. Furthermore, the development of hypoxic pulmonary hypertension was significantly reduced by bosentan. In contrast, bosentan did not influence the pulmonary vasopressor response to the thromboxane mimic U-46619. We therefore conclude that vasopressor endothelin receptors seem to be activated by endogenous endothelin released during hypoxia, leading to an increase in the pulmonary vascular tone. (J THORAC CARDIOVASC SURG 1996;112:890-7

    The Discovery of Nonpeptide Endothelin Receptor Antagonists. Progression towards Bosentan

    Get PDF
    Since its discovery, endothelin-1 has attracted considerable scientific interest for its extremely potent and long-lasting vasoconstrictor effect and its binding to G-protein-coupled receptors. The endothelins appear to be part of a functional regulatory system in the circulation and strong evidence has accumulated for their involvement in clinical disorders associated with vasoconstriction (e.g. renal failure, congestive heart failure).In a program aimed at identifying nonpeptide ET receptor antagonists, a distinct class of substituted arylsulfonamido pyrimidines was discovered from a chemical substance library. Lead optimization led to orally active antagonists of ETA and ETB receptors possessing mixed or receptor-subtype-selective profiles in the low nanomolar range. From these compounds, the mixed antagonist bosentan was selected for development; it shows efficacy in several pathophysiological models of local and systemic vasoconstriction and promising clinical results in patients suffering from congestive heart failure.Chemical modifications in this structural class in combination with X-ray crystal data analysis for key compounds led to more in-depth understanding of antagonist-receptor interaction. Structural determinants of bosentan binding to the ETA receptor were defined on the molecular level by site-directed mutagenesis experiments. This led to a 3D model of the antagonist binding domain which proved valuable to rationalize structure-activity relationships

    Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    Get PDF
    BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study

    Clozel M. At the heart of tissue: endothelin system and endorgan damage. Clin Sci (Lond

    No full text
    A B S T R A C T ET (endothelin)-1 was first described as a potent vasoconstrictor. Since then, many other deleterious properties mediated via its two receptors, ET A and ET B , have been described, such as inflammation, fibrosis and hyperplasia. These effects, combined with a wide tissue distribution of the ET system, its up-regulation in pathological situations and a local autocrine/paracrine activity due to a high tissue receptor binding, make the tissue ET system a key local player in end-organ damage. Furthermore, ET-1 interacts in tissues with other systems such as the RAAS (renin-angiotensin-aldosterone system) to exert its effects. In numerous genetically modified animal models, non-specific or organ-targeted ET-1 overexpression causes intense organ damage, especially hypertrophy and fibrosis, in the absence of haemodynamic changes, confirming a local activity of the ET system. ET receptor antagonists have been shown to prevent and sometimes reverse these tissue alterations in an organ-specific manner, leading to long-term benefits and an improvement in survival in different animal models. Potential for such benefits going beyond a pure haemodynamic effect have also been suggested by clinical trial results in which ET receptor antagonism decreased the occurrence of new digital ulcers in patients with systemic sclerosis and delayed the time to clinical worsening in patients with PAH (pulmonary arterial hypertension). The tissue ET system allows therapeutic interventions to provide organ selectivity and beneficial effects in diseases associated with tissue inflammation, hypertrophy or fibrosis
    • …
    corecore